Remarks on Fourier series
Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 597-603
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the following propositions. An even integrable function whose Fourier coefficients form a convex sequence is absolutely continuous if and only if its Fourier series converges absolutely. If the function $f(t)$ is convex on $[0,\,\pi]$, $f(t)=f(\pi-t)$, then for odd $n$ $b_n=\frac2\pi\int_0^\pi f(t)\sin nt dt=\frac4\pi\frac{f(\pi/n)}n+\gamma_n$, $\sum_{n>1}|\gamma_n|<10\lceil f(\pi/2)\rceil$ while for even $n$, $b_n=0$.
@article{MZM_1968_3_5_a12,
author = {R. M. Trigub},
title = {Remarks on {Fourier} series},
journal = {Matemati\v{c}eskie zametki},
pages = {597--603},
year = {1968},
volume = {3},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a12/}
}
R. M. Trigub. Remarks on Fourier series. Matematičeskie zametki, Tome 3 (1968) no. 5, pp. 597-603. http://geodesic.mathdoc.fr/item/MZM_1968_3_5_a12/