Some inequalities of the V.\,A.~Markov type
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 431-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a domain in the complex plane, let $p_n(z)$ and $P_n(z)$ be polynomials of degree $n$ where the zeros of $P_n(z)$ lie in $\overline B$, let $\varphi(z)$ be a finite function, $\varphi(z)\ne0$, $z\overline\in\overline B$. We consider the problem of estimating from above the functions $L[p_n(z)]=\varphi p_n'(z)-wp_n(z),\,\overline\in\overline B$, если $|p_n(z)|\leqslant+|P_n(z)|$ при $z\in\overline B$. Under some very general conditions on $B$, $z$, $\varphi(z)$ and $w$ we prove the inequality $|L[p_n(z)]|\leqslant|L[P_n(z)]|$.
@article{MZM_1968_3_4_a8,
     author = {V. A. Andreeva and V. M. Chevskii},
     title = {Some inequalities of the {V.\,A.~Markov} type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {431--440},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a8/}
}
TY  - JOUR
AU  - V. A. Andreeva
AU  - V. M. Chevskii
TI  - Some inequalities of the V.\,A.~Markov type
JO  - Matematičeskie zametki
PY  - 1968
SP  - 431
EP  - 440
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a8/
LA  - ru
ID  - MZM_1968_3_4_a8
ER  - 
%0 Journal Article
%A V. A. Andreeva
%A V. M. Chevskii
%T Some inequalities of the V.\,A.~Markov type
%J Matematičeskie zametki
%D 1968
%P 431-440
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a8/
%G ru
%F MZM_1968_3_4_a8
V. A. Andreeva; V. M. Chevskii. Some inequalities of the V.\,A.~Markov type. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 431-440. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a8/