Some inequalities of the V.\,A.~Markov type
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 431-440
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B$ be a domain in the complex plane, let $p_n(z)$ and $P_n(z)$ be polynomials of degree $n$ where the zeros of $P_n(z)$ lie in $\overline B$, let $\varphi(z)$ be a finite function, $\varphi(z)\ne0$, $z\overline\in\overline B$. We consider the problem of estimating from above the functions $L[p_n(z)]=\varphi p_n'(z)-wp_n(z),\,\overline\in\overline B$, если $|p_n(z)|\leqslant+|P_n(z)|$ при $z\in\overline B$. Under some very general conditions on $B$, $z$, $\varphi(z)$ and $w$ we prove the inequality $|L[p_n(z)]|\leqslant|L[P_n(z)]|$.
@article{MZM_1968_3_4_a8,
author = {V. A. Andreeva and V. M. Chevskii},
title = {Some inequalities of the {V.\,A.~Markov} type},
journal = {Matemati\v{c}eskie zametki},
pages = {431--440},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a8/}
}
V. A. Andreeva; V. M. Chevskii. Some inequalities of the V.\,A.~Markov type. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 431-440. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a8/