The existence of topologically inseparable transformations of a nonergodic $n$-dimensional domain
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 427-430
Cet article a éte moissonné depuis la source Math-Net.Ru
The existence of topologically inseparable Lebesgue measure-preserving transformations of any nonergodic $n$-dimensional closed bounded connected domain is proved.
@article{MZM_1968_3_4_a7,
author = {E. A. Sidorov},
title = {The existence of topologically inseparable transformations of a~nonergodic $n$-dimensional domain},
journal = {Matemati\v{c}eskie zametki},
pages = {427--430},
year = {1968},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a7/}
}
E. A. Sidorov. The existence of topologically inseparable transformations of a nonergodic $n$-dimensional domain. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 427-430. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a7/