The existence of topologically inseparable transformations of a~nonergodic $n$-dimensional domain
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 427-430.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of topologically inseparable Lebesgue measure-preserving transformations of any nonergodic $n$-dimensional closed bounded connected domain is proved.
@article{MZM_1968_3_4_a7,
     author = {E. A. Sidorov},
     title = {The existence of topologically inseparable transformations of a~nonergodic $n$-dimensional domain},
     journal = {Matemati\v{c}eskie zametki},
     pages = {427--430},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a7/}
}
TY  - JOUR
AU  - E. A. Sidorov
TI  - The existence of topologically inseparable transformations of a~nonergodic $n$-dimensional domain
JO  - Matematičeskie zametki
PY  - 1968
SP  - 427
EP  - 430
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a7/
LA  - ru
ID  - MZM_1968_3_4_a7
ER  - 
%0 Journal Article
%A E. A. Sidorov
%T The existence of topologically inseparable transformations of a~nonergodic $n$-dimensional domain
%J Matematičeskie zametki
%D 1968
%P 427-430
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a7/
%G ru
%F MZM_1968_3_4_a7
E. A. Sidorov. The existence of topologically inseparable transformations of a~nonergodic $n$-dimensional domain. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 427-430. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a7/