On a~continuous analog of the gradient method
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 421-426.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a real Hilbert space $H$ we consider the nonlinear operator equation $P(x)=0$ and the continuous gradient method \begin{equation} x'(t)=-P'(x)*P(x),\qquad x(0)=x_0. \tag{*} \end{equation} Two theorems on the convergence of the process (*) to the solution of the equation $P(x)=0$ are proved.
@article{MZM_1968_3_4_a6,
     author = {E. I. Lin'kov},
     title = {On a~continuous analog of the gradient method},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--426},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a6/}
}
TY  - JOUR
AU  - E. I. Lin'kov
TI  - On a~continuous analog of the gradient method
JO  - Matematičeskie zametki
PY  - 1968
SP  - 421
EP  - 426
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a6/
LA  - ru
ID  - MZM_1968_3_4_a6
ER  - 
%0 Journal Article
%A E. I. Lin'kov
%T On a~continuous analog of the gradient method
%J Matematičeskie zametki
%D 1968
%P 421-426
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a6/
%G ru
%F MZM_1968_3_4_a6
E. I. Lin'kov. On a~continuous analog of the gradient method. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 421-426. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a6/