On a~continuous analog of the gradient method
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 421-426
Voir la notice de l'article provenant de la source Math-Net.Ru
In a real Hilbert space $H$ we consider the nonlinear operator equation $P(x)=0$ and the continuous gradient method
\begin{equation}
x'(t)=-P'(x)*P(x),\qquad x(0)=x_0.
\tag{*}
\end{equation}
Two theorems on the convergence of the process (*) to the solution of the equation $P(x)=0$ are proved.
@article{MZM_1968_3_4_a6,
author = {E. I. Lin'kov},
title = {On a~continuous analog of the gradient method},
journal = {Matemati\v{c}eskie zametki},
pages = {421--426},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a6/}
}
E. I. Lin'kov. On a~continuous analog of the gradient method. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 421-426. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a6/