Localization of the spectrum of certain non-self-adjoint operators
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 415-419
Cet article a éte moissonné depuis la source Math-Net.Ru
Let the self-adjoint operator $A$ and the bounded operator $B$ be specified in Hilbert space $\mathscr H$. We let denote the spectral family of the operator $A$. If $\|(E-E_N)B\|^2+E_{-N}B\|^2\to 0$, then in the complex plane $z=\sigma+\tau$ there will exist the curve $|\tau|=f(\sigma)$, $\lim f(\sigma)=0$ for $\sigma\to\pm\infty$ such that the entire spectrum of the operator $A+B$ lies within the region $|\tau|\le f(\sigma)$. In particular, the condition of the theorem will be satisfied when $B$ is a completely continuous operator.
@article{MZM_1968_3_4_a5,
author = {M. M. Gekhtman},
title = {Localization of the spectrum of certain non-self-adjoint operators},
journal = {Matemati\v{c}eskie zametki},
pages = {415--419},
year = {1968},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a5/}
}
M. M. Gekhtman. Localization of the spectrum of certain non-self-adjoint operators. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 415-419. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a5/