Example of a~surface that is homotopic to a~tube and has a~closed asymptotic line
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 403-413.

Voir la notice de l'article provenant de la source Math-Net.Ru

The possible existence of a tube of negative Gaussian curvature with a closed asymptotic line is investigated, and an example of a closed asymptotic strip homotopic to a cylinder is formulated.
@article{MZM_1968_3_4_a4,
     author = {G. A. Kovaleva},
     title = {Example of a~surface that is homotopic to a~tube and has a~closed asymptotic line},
     journal = {Matemati\v{c}eskie zametki},
     pages = {403--413},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a4/}
}
TY  - JOUR
AU  - G. A. Kovaleva
TI  - Example of a~surface that is homotopic to a~tube and has a~closed asymptotic line
JO  - Matematičeskie zametki
PY  - 1968
SP  - 403
EP  - 413
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a4/
LA  - ru
ID  - MZM_1968_3_4_a4
ER  - 
%0 Journal Article
%A G. A. Kovaleva
%T Example of a~surface that is homotopic to a~tube and has a~closed asymptotic line
%J Matematičeskie zametki
%D 1968
%P 403-413
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a4/
%G ru
%F MZM_1968_3_4_a4
G. A. Kovaleva. Example of a~surface that is homotopic to a~tube and has a~closed asymptotic line. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 403-413. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a4/