Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 395-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

Manifolds of algebras with the operation $xyz\tau$ defined by the following identities: 1) $xyz\tau yz\tau=x$; 2)$xxyz\tau z\tau=y$; 3) $xyxyz\tau\tau=z$; 4) $xxz\tau=z$, which correspond to Steiner quadruplets [3], like manifolds of structures, have a unique equationally complete submanifold [4]. It is proved that in the class of all algebras defined only by the identities 1), 2), and 3) the set of all equationally complete submanifolds has the power of a continuum.
@article{MZM_1968_3_4_a3,
     author = {I. Sh. o. Aliev},
     title = {Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {395--401},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a3/}
}
TY  - JOUR
AU  - I. Sh. o. Aliev
TI  - Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups
JO  - Matematičeskie zametki
PY  - 1968
SP  - 395
EP  - 401
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a3/
LA  - ru
ID  - MZM_1968_3_4_a3
ER  - 
%0 Journal Article
%A I. Sh. o. Aliev
%T Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups
%J Matematičeskie zametki
%D 1968
%P 395-401
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a3/
%G ru
%F MZM_1968_3_4_a3
I. Sh. o. Aliev. Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 395-401. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a3/