Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 395-401
Voir la notice de l'article provenant de la source Math-Net.Ru
Manifolds of algebras with the operation $xyz\tau$ defined by the following identities: 1) $xyz\tau yz\tau=x$; 2)$xxyz\tau z\tau=y$; 3) $xyxyz\tau\tau=z$; 4) $xxz\tau=z$, which correspond to Steiner quadruplets [3], like manifolds of structures, have a unique equationally complete submanifold [4]. It is proved that in the class of all algebras defined only by the identities 1), 2), and 3) the set of all equationally complete submanifolds has the power of a continuum.
@article{MZM_1968_3_4_a3,
author = {I. Sh. o. Aliev},
title = {Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups},
journal = {Matemati\v{c}eskie zametki},
pages = {395--401},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a3/}
}
TY - JOUR AU - I. Sh. o. Aliev TI - Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups JO - Matematičeskie zametki PY - 1968 SP - 395 EP - 401 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a3/ LA - ru ID - MZM_1968_3_4_a3 ER -
I. Sh. o. Aliev. Power of a~set of equationally complete submanifolds of a~manifold of symmetrically ternary quasigroups. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 395-401. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a3/