Mathematical expectations of functions of sums of a~random number of independent terms
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 387-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found which must be imposed on a function $g(x)$, in order that $Mg(\xi_1+\xi_2+\dots+\xi_\nu)\infty$, if $Mg(\xi_i)\infty$ and $Mg(\nu)\infty$, $\nu,\xi_1,\xi_2,\dots,\xi_n,\dots$ being non-negative and independent, $\nu$ being integral, and $\{\xi_i\}$ being identically distributed. The result is applied to the theory of branching processes.
@article{MZM_1968_3_4_a2,
     author = {B. A. Sevast'yanov},
     title = {Mathematical expectations of functions of sums of a~random number of independent terms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {387--394},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a2/}
}
TY  - JOUR
AU  - B. A. Sevast'yanov
TI  - Mathematical expectations of functions of sums of a~random number of independent terms
JO  - Matematičeskie zametki
PY  - 1968
SP  - 387
EP  - 394
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a2/
LA  - ru
ID  - MZM_1968_3_4_a2
ER  - 
%0 Journal Article
%A B. A. Sevast'yanov
%T Mathematical expectations of functions of sums of a~random number of independent terms
%J Matematičeskie zametki
%D 1968
%P 387-394
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a2/
%G ru
%F MZM_1968_3_4_a2
B. A. Sevast'yanov. Mathematical expectations of functions of sums of a~random number of independent terms. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 387-394. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a2/