On representation of numbers by binary forms
Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 369-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective method is given for finding all rational points, the denominators of which are formed from a finite number of fixed primes, on the curve $f(x,y)=A$, where $f(x,y)$ is a binary form of degree three at least, irreducible over the field of rational numbers, and $A$ is a rational number.
@article{MZM_1968_3_4_a0,
     author = {A. I. Vinogradov and V. G. Sprindzhuk},
     title = {On representation of numbers by binary forms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {369--376},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a0/}
}
TY  - JOUR
AU  - A. I. Vinogradov
AU  - V. G. Sprindzhuk
TI  - On representation of numbers by binary forms
JO  - Matematičeskie zametki
PY  - 1968
SP  - 369
EP  - 376
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a0/
LA  - ru
ID  - MZM_1968_3_4_a0
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%A V. G. Sprindzhuk
%T On representation of numbers by binary forms
%J Matematičeskie zametki
%D 1968
%P 369-376
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a0/
%G ru
%F MZM_1968_3_4_a0
A. I. Vinogradov; V. G. Sprindzhuk. On representation of numbers by binary forms. Matematičeskie zametki, Tome 3 (1968) no. 4, pp. 369-376. http://geodesic.mathdoc.fr/item/MZM_1968_3_4_a0/