Completeness of the system of Floquet solutions of equations of the neutral type
Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 297-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions for the completeness of the system of Floquet solutions, the eigenfunctions and associated functions of the displacement operator, over a period of the coefficient in metrics $C_1$ and $C$ in the space of all solutions of the equation $\dot y(t)=q(t)y(t-n\omega)+a\dot y(t-m\omega)$, are obtained. Here $q(t)$ is a continuous function of the period $\omega$.
@article{MZM_1968_3_3_a8,
     author = {N. A. Kulesko},
     title = {Completeness of the system of {Floquet} solutions of equations of the neutral type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {297--306},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a8/}
}
TY  - JOUR
AU  - N. A. Kulesko
TI  - Completeness of the system of Floquet solutions of equations of the neutral type
JO  - Matematičeskie zametki
PY  - 1968
SP  - 297
EP  - 306
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a8/
LA  - ru
ID  - MZM_1968_3_3_a8
ER  - 
%0 Journal Article
%A N. A. Kulesko
%T Completeness of the system of Floquet solutions of equations of the neutral type
%J Matematičeskie zametki
%D 1968
%P 297-306
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a8/
%G ru
%F MZM_1968_3_3_a8
N. A. Kulesko. Completeness of the system of Floquet solutions of equations of the neutral type. Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 297-306. http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a8/