Regulator convergence in commutative $l$-groups
Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 279-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of lattice ordered groups there are considered several types of convergence. In this work it is shown that for nets ($r$)-convergence is essentially stronger than ($o$)-convergence, while for sequences these notions are not comparable (as is known, in $K$-lineals, ($r$)-convergence for sequences as well as for nets is stronger than ($o$)-convergence); in $K_\sigma$-groups ($r$)-convergence of sequences is stronger than ($o$)-convergence. (A sequence is considered ($o$)-convergent if it is compressed by monotone sequences to a common limit.)
@article{MZM_1968_3_3_a5,
     author = {\`E. E. Gurevich},
     title = {Regulator convergence in commutative $l$-groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {279--284},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a5/}
}
TY  - JOUR
AU  - È. E. Gurevich
TI  - Regulator convergence in commutative $l$-groups
JO  - Matematičeskie zametki
PY  - 1968
SP  - 279
EP  - 284
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a5/
LA  - ru
ID  - MZM_1968_3_3_a5
ER  - 
%0 Journal Article
%A È. E. Gurevich
%T Regulator convergence in commutative $l$-groups
%J Matematičeskie zametki
%D 1968
%P 279-284
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a5/
%G ru
%F MZM_1968_3_3_a5
È. E. Gurevich. Regulator convergence in commutative $l$-groups. Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 279-284. http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a5/