Local properties of sums of certain random series
Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 261-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are given which insure the uniform convergence of random series of the form $S(x)=\sum_{n=0}^\infty\xi_nP_n(x)$ , where $P_n(x)$ is a trigonometric polynomial of degree $n$. Conditions are also given under which $S(x)$ satisfies Hölder's conditions.
@article{MZM_1968_3_3_a3,
     author = {Yu. V. Kozachenko},
     title = {Local properties of sums of certain random series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {261--269},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a3/}
}
TY  - JOUR
AU  - Yu. V. Kozachenko
TI  - Local properties of sums of certain random series
JO  - Matematičeskie zametki
PY  - 1968
SP  - 261
EP  - 269
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a3/
LA  - ru
ID  - MZM_1968_3_3_a3
ER  - 
%0 Journal Article
%A Yu. V. Kozachenko
%T Local properties of sums of certain random series
%J Matematičeskie zametki
%D 1968
%P 261-269
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a3/
%G ru
%F MZM_1968_3_3_a3
Yu. V. Kozachenko. Local properties of sums of certain random series. Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 261-269. http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a3/