Extension of dual subspaces invariant under an algebra
Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 253-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

Phillips' known hypothesis concerning the extension of dual pairs of subspaces $\{\mathfrak L_1^0,\mathfrak L_2^0\}$, invariant under a commutative $J$-symmetric algebra $R$ in a Hilbert space $\mathfrak H$ , to a dual pair of maximal subspaces $\{\mathfrak L_1,\mathfrak L_2\}$, invariant under $R$ is established in the case where a dual pair of maximal subspaces exists $\{\mathfrak F_1,\mathfrak F_2\}$, invariant under $R$ with $\overline{\mathfrak F_1\oplus\mathfrak F_2}=\mathfrak H$, and the pair $\{\mathfrak L_1^0,\mathfrak L_2^1\}$ consists of $J$-neutral subspaces.
@article{MZM_1968_3_3_a2,
     author = {E. A. Larionov},
     title = {Extension of dual subspaces invariant under an algebra},
     journal = {Matemati\v{c}eskie zametki},
     pages = {253--260},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a2/}
}
TY  - JOUR
AU  - E. A. Larionov
TI  - Extension of dual subspaces invariant under an algebra
JO  - Matematičeskie zametki
PY  - 1968
SP  - 253
EP  - 260
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a2/
LA  - ru
ID  - MZM_1968_3_3_a2
ER  - 
%0 Journal Article
%A E. A. Larionov
%T Extension of dual subspaces invariant under an algebra
%J Matematičeskie zametki
%D 1968
%P 253-260
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a2/
%G ru
%F MZM_1968_3_3_a2
E. A. Larionov. Extension of dual subspaces invariant under an algebra. Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 253-260. http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a2/