A relation between Jensen's inequality and a geometrical problem
Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 327-338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relation is established between Jensen's inequality and a problem suggested by H. Jung concerning the size of the smallest sphere containing a set of given diameter. An estimate is obtained of the size of this sphere in terms of the absolute value of the convexity of the space.
@article{MZM_1968_3_3_a11,
     author = {V. I. Berdyshev},
     title = {A~relation between {Jensen's} inequality and a~geometrical problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {327--338},
     year = {1968},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a11/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - A relation between Jensen's inequality and a geometrical problem
JO  - Matematičeskie zametki
PY  - 1968
SP  - 327
EP  - 338
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a11/
LA  - ru
ID  - MZM_1968_3_3_a11
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T A relation between Jensen's inequality and a geometrical problem
%J Matematičeskie zametki
%D 1968
%P 327-338
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a11/
%G ru
%F MZM_1968_3_3_a11
V. I. Berdyshev. A relation between Jensen's inequality and a geometrical problem. Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 327-338. http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a11/