Bases formed of successive primitives
Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 237-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are found in order for the system of successive primitives $$ \biggl\{F_n(z)=\sum_{k=0}^\infty\frac{a+_{k-n}}{k!}z^k\biggr\},\quad n=0,1,2,\dots, $$ generated by the integer-valued function $F_0(z)=\sum_{k=0}^\infty\frac{a_{k_{zk}}}{k!}$ growth no higher than first order of the normal type $\sigma(F_0(z)\in[1,\sigma]$, to form a quasi-power basis in the class $[1;\sigma]$.
@article{MZM_1968_3_3_a0,
     author = {Yu. A. Kaz'min},
     title = {Bases formed of successive primitives},
     journal = {Matemati\v{c}eskie zametki},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Kaz'min
TI  - Bases formed of successive primitives
JO  - Matematičeskie zametki
PY  - 1968
SP  - 237
EP  - 246
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a0/
LA  - ru
ID  - MZM_1968_3_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Kaz'min
%T Bases formed of successive primitives
%J Matematičeskie zametki
%D 1968
%P 237-246
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a0/
%G ru
%F MZM_1968_3_3_a0
Yu. A. Kaz'min. Bases formed of successive primitives. Matematičeskie zametki, Tome 3 (1968) no. 3, pp. 237-246. http://geodesic.mathdoc.fr/item/MZM_1968_3_3_a0/