Best approximation of a~differentiation operator in $L_2$-space
Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 157-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains the magnitude of the best approximation in the $L_2$-sense of a $k$-th order differentiation operator of a bounded linear operator $A(f)$ which acts on the class of functions which are differentiable $n$ times.
@article{MZM_1968_3_2_a4,
     author = {Yu. N. Subbotin and L. V. Taikov},
     title = {Best approximation of a~differentiation operator in $L_2$-space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a4/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - L. V. Taikov
TI  - Best approximation of a~differentiation operator in $L_2$-space
JO  - Matematičeskie zametki
PY  - 1968
SP  - 157
EP  - 164
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a4/
LA  - ru
ID  - MZM_1968_3_2_a4
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A L. V. Taikov
%T Best approximation of a~differentiation operator in $L_2$-space
%J Matematičeskie zametki
%D 1968
%P 157-164
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a4/
%G ru
%F MZM_1968_3_2_a4
Yu. N. Subbotin; L. V. Taikov. Best approximation of a~differentiation operator in $L_2$-space. Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 157-164. http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a4/