Some properties of functions in Orlicz space
Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 145-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions in Orlicz space $L^*_M$, we study the behavior of $\int^\tau_0x^*(t)\,dt$, where $x^*(t)$ is non-increasing and equimeasurable with $|x(t)|$. We establish the existence of unbounded functions in $L^*_M$, that are not limits of bounded functions and for which $\int_0^\tau x^*(t)\,dt=o(\tau M^{-1}(1/\tau))$. Moreover, we establish a new criterion for an $N$-function to belong to the class $\Delta_2$ and a sufficiency test for a function to belong to Orlicz space.
@article{MZM_1968_3_2_a3,
     author = {D. V. Salekhov},
     title = {Some properties of functions in {Orlicz} space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {145--156},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a3/}
}
TY  - JOUR
AU  - D. V. Salekhov
TI  - Some properties of functions in Orlicz space
JO  - Matematičeskie zametki
PY  - 1968
SP  - 145
EP  - 156
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a3/
LA  - ru
ID  - MZM_1968_3_2_a3
ER  - 
%0 Journal Article
%A D. V. Salekhov
%T Some properties of functions in Orlicz space
%J Matematičeskie zametki
%D 1968
%P 145-156
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a3/
%G ru
%F MZM_1968_3_2_a3
D. V. Salekhov. Some properties of functions in Orlicz space. Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 145-156. http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a3/