Some properties of functions in Orlicz space
Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 145-156
Cet article a éte moissonné depuis la source Math-Net.Ru
For functions in Orlicz space $L^*_M$, we study the behavior of $\int^\tau_0x^*(t)\,dt$, where $x^*(t)$ is non-increasing and equimeasurable with $|x(t)|$. We establish the existence of unbounded functions in $L^*_M$, that are not limits of bounded functions and for which $\int_0^\tau x^*(t)\,dt=o(\tau M^{-1}(1/\tau))$. Moreover, we establish a new criterion for an $N$-function to belong to the class $\Delta_2$ and a sufficiency test for a function to belong to Orlicz space.
@article{MZM_1968_3_2_a3,
author = {D. V. Salekhov},
title = {Some properties of functions in {Orlicz} space},
journal = {Matemati\v{c}eskie zametki},
pages = {145--156},
year = {1968},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a3/}
}
D. V. Salekhov. Some properties of functions in Orlicz space. Matematičeskie zametki, Tome 3 (1968) no. 2, pp. 145-156. http://geodesic.mathdoc.fr/item/MZM_1968_3_2_a3/