Beste Approximation von Elementen eines nuklearen Raumes
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 77-84
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that
$$
|f(x)-V_{n,m}(f,x)|\leqslant\frac C{m+1}\sum^n_{k=n-m}E_k\left[1+\ln\left(1+\frac{n-m}{k-n+m+1}\right)\right],
$$
for every continuous function with period $2M$, where $C$ is an absolute constant and $0\le m\le n$, and we then apply this bound.
@article{MZM_1968_3_1_a9,
author = {A. A. Zakharov},
title = {Beste {Approximation} von {Elementen} eines nuklearen {Raumes}},
journal = {Matemati\v{c}eskie zametki},
pages = {77--84},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a9/}
}
A. A. Zakharov. Beste Approximation von Elementen eines nuklearen Raumes. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 77-84. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a9/