Beste Approximation von Elementen eines nuklearen Raumes
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 77-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that $$ |f(x)-V_{n,m}(f,x)|\leqslant\frac C{m+1}\sum^n_{k=n-m}E_k\left[1+\ln\left(1+\frac{n-m}{k-n+m+1}\right)\right], $$ for every continuous function with period $2M$, where $C$ is an absolute constant and $0\le m\le n$, and we then apply this bound.
@article{MZM_1968_3_1_a9,
     author = {A. A. Zakharov},
     title = {Beste {Approximation} von {Elementen} eines nuklearen {Raumes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a9/}
}
TY  - JOUR
AU  - A. A. Zakharov
TI  - Beste Approximation von Elementen eines nuklearen Raumes
JO  - Matematičeskie zametki
PY  - 1968
SP  - 77
EP  - 84
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a9/
LA  - ru
ID  - MZM_1968_3_1_a9
ER  - 
%0 Journal Article
%A A. A. Zakharov
%T Beste Approximation von Elementen eines nuklearen Raumes
%J Matematičeskie zametki
%D 1968
%P 77-84
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a9/
%G ru
%F MZM_1968_3_1_a9
A. A. Zakharov. Beste Approximation von Elementen eines nuklearen Raumes. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 77-84. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a9/