The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 71-76
Voir la notice de l'article provenant de la source Math-Net.Ru
For an algebra $\mathfrak A$ of subsets of a set X there is constructed a set $\widetilde X\supset X$ and an algebra of its subsets so that the mapping $\widetilde A\to A=\mathop\mathfrak A\limits^\sim\cap A$ is a one-to-one correspondence between $\mathop\mathfrak A\limits^\sim$ and $\mathfrak A$ and for each additive measure $M$ on $\mathfrak A$ the measure $\widetilde\mu$ on $\mathop\mathfrak A\limits^\sim$ defined by the equation $\widetilde\mu(\widetilde A)=\mu(A)$ is countably additive.
@article{MZM_1968_3_1_a8,
author = {D. N. Dudin},
title = {The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space},
journal = {Matemati\v{c}eskie zametki},
pages = {71--76},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/}
}
TY - JOUR AU - D. N. Dudin TI - The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space JO - Matematičeskie zametki PY - 1968 SP - 71 EP - 76 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/ LA - ru ID - MZM_1968_3_1_a8 ER -
D. N. Dudin. The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 71-76. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/