The complementation of an additive measure up to $\sigma$-additivity by means of an extension of the space
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 71-76
Cet article a éte moissonné depuis la source Math-Net.Ru
For an algebra $\mathfrak A$ of subsets of a set X there is constructed a set $\widetilde X\supset X$ and an algebra of its subsets so that the mapping $\widetilde A\to A=\mathop\mathfrak A\limits^\sim\cap A$ is a one-to-one correspondence between $\mathop\mathfrak A\limits^\sim$ and $\mathfrak A$ and for each additive measure $M$ on $\mathfrak A$ the measure $\widetilde\mu$ on $\mathop\mathfrak A\limits^\sim$ defined by the equation $\widetilde\mu(\widetilde A)=\mu(A)$ is countably additive.
@article{MZM_1968_3_1_a8,
author = {D. N. Dudin},
title = {The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space},
journal = {Matemati\v{c}eskie zametki},
pages = {71--76},
year = {1968},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/}
}
D. N. Dudin. The complementation of an additive measure up to $\sigma$-additivity by means of an extension of the space. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 71-76. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/