The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 71-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebra $\mathfrak A$ of subsets of a set X there is constructed a set $\widetilde X\supset X$ and an algebra of its subsets so that the mapping $\widetilde A\to A=\mathop\mathfrak A\limits^\sim\cap A$ is a one-to-one correspondence between $\mathop\mathfrak A\limits^\sim$ and $\mathfrak A$ and for each additive measure $M$ on $\mathfrak A$ the measure $\widetilde\mu$ on $\mathop\mathfrak A\limits^\sim$ defined by the equation $\widetilde\mu(\widetilde A)=\mu(A)$ is countably additive.
@article{MZM_1968_3_1_a8,
     author = {D. N. Dudin},
     title = {The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {71--76},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/}
}
TY  - JOUR
AU  - D. N. Dudin
TI  - The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space
JO  - Matematičeskie zametki
PY  - 1968
SP  - 71
EP  - 76
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/
LA  - ru
ID  - MZM_1968_3_1_a8
ER  - 
%0 Journal Article
%A D. N. Dudin
%T The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space
%J Matematičeskie zametki
%D 1968
%P 71-76
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/
%G ru
%F MZM_1968_3_1_a8
D. N. Dudin. The complementation of an~additive measure up to $\sigma$-additivity by means of an~extension of the space. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 71-76. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a8/