Chebyshev sets and some generalizations of them
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 59-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we generalize and strengthen certain results contained in [12]. For example, we establish that, in a uniformly convex and smooth Banach space, any locally compact Chebyshev set is convex
@article{MZM_1968_3_1_a7,
     author = {L. P. Vlasov},
     title = {Chebyshev sets and some generalizations of them},
     journal = {Matemati\v{c}eskie zametki},
     pages = {59--69},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a7/}
}
TY  - JOUR
AU  - L. P. Vlasov
TI  - Chebyshev sets and some generalizations of them
JO  - Matematičeskie zametki
PY  - 1968
SP  - 59
EP  - 69
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a7/
LA  - ru
ID  - MZM_1968_3_1_a7
ER  - 
%0 Journal Article
%A L. P. Vlasov
%T Chebyshev sets and some generalizations of them
%J Matematičeskie zametki
%D 1968
%P 59-69
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a7/
%G ru
%F MZM_1968_3_1_a7
L. P. Vlasov. Chebyshev sets and some generalizations of them. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 59-69. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a7/