The algebraic independence of certain transcendental numbers
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 51-58
Voir la notice de l'article provenant de la source Math-Net.Ru
Given the three numbers of, $a^\beta_1$, $a^\beta_2$, and $\frac{\ln a_2}{\ln a_1}$, where $a_1$ and $a_2$ are algebraic numbers whose logarithms are linearly independent in a rational field and $\beta$ is a quadratic irrationality, it is shown that they are not all expressible algebraically in terms of one of them.
@article{MZM_1968_3_1_a6,
author = {A. A. Shmelev},
title = {The algebraic independence of certain transcendental numbers},
journal = {Matemati\v{c}eskie zametki},
pages = {51--58},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a6/}
}
A. A. Shmelev. The algebraic independence of certain transcendental numbers. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a6/