The normalizer condition
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 45-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a torsion-free group $\mathfrak G$, in which every infinite proper subgroup is distinct from its normalizer satisfies the normalizer condition, i.e., every proper subgroup is distinct from its normalizer.
@article{MZM_1968_3_1_a5,
     author = {S. N. Chernikov},
     title = {The normalizer condition},
     journal = {Matemati\v{c}eskie zametki},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a5/}
}
TY  - JOUR
AU  - S. N. Chernikov
TI  - The normalizer condition
JO  - Matematičeskie zametki
PY  - 1968
SP  - 45
EP  - 50
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a5/
LA  - ru
ID  - MZM_1968_3_1_a5
ER  - 
%0 Journal Article
%A S. N. Chernikov
%T The normalizer condition
%J Matematičeskie zametki
%D 1968
%P 45-50
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a5/
%G ru
%F MZM_1968_3_1_a5
S. N. Chernikov. The normalizer condition. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 45-50. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a5/