Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 39-44
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we show that groups, all of whose maximal abelian subgroups are either normal or have a normal complement, are solvable and their degree of solvability is not higher than four. Periodic groups with the above property are locally finite. For a short description of these groups, see [5].
@article{MZM_1968_3_1_a4,
author = {A. N. Fomin},
title = {Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented},
journal = {Matemati\v{c}eskie zametki},
pages = {39--44},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a4/}
}
TY - JOUR AU - A. N. Fomin TI - Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented JO - Matematičeskie zametki PY - 1968 SP - 39 EP - 44 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a4/ LA - ru ID - MZM_1968_3_1_a4 ER -
A. N. Fomin. Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a4/