Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show that groups, all of whose maximal abelian subgroups are either normal or have a normal complement, are solvable and their degree of solvability is not higher than four. Periodic groups with the above property are locally finite. For a short description of these groups, see [5].
@article{MZM_1968_3_1_a4,
     author = {A. N. Fomin},
     title = {Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented},
     journal = {Matemati\v{c}eskie zametki},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a4/}
}
TY  - JOUR
AU  - A. N. Fomin
TI  - Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented
JO  - Matematičeskie zametki
PY  - 1968
SP  - 39
EP  - 44
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a4/
LA  - ru
ID  - MZM_1968_3_1_a4
ER  - 
%0 Journal Article
%A A. N. Fomin
%T Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented
%J Matematičeskie zametki
%D 1968
%P 39-44
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a4/
%G ru
%F MZM_1968_3_1_a4
A. N. Fomin. Periodic groups whose maximal abelian subgroups are either invariant or else invariantly complemented. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a4/