The stabilization of the solutions of certain parabolic equations and systems
Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 85-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns the investigation of the stabilization of solutions of the Cauchy problem for a system of equations of the form $\frac{\partial u}{\partial t}=\Delta u+F_1(u,v)$. It is proved that under certain assumptions the behavior of solutions as $t\to\infty$ is determined by mutual arrangement of the set of initial conditions $\{(u,v):u=f_1(x),\ v=f_2(x),\ x\in R^n\}$ and the trajectories of the system of ordinary differential equations $\frac{du}{dt}=F_1(u,v)$. The question of stabilization of the solutions of a single quasilinear parabolic equation is also considered.
@article{MZM_1968_3_1_a10,
     author = {M. I. Freidlin},
     title = {The stabilization of the solutions of certain parabolic equations and systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {85--92},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a10/}
}
TY  - JOUR
AU  - M. I. Freidlin
TI  - The stabilization of the solutions of certain parabolic equations and systems
JO  - Matematičeskie zametki
PY  - 1968
SP  - 85
EP  - 92
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a10/
LA  - ru
ID  - MZM_1968_3_1_a10
ER  - 
%0 Journal Article
%A M. I. Freidlin
%T The stabilization of the solutions of certain parabolic equations and systems
%J Matematičeskie zametki
%D 1968
%P 85-92
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a10/
%G ru
%F MZM_1968_3_1_a10
M. I. Freidlin. The stabilization of the solutions of certain parabolic equations and systems. Matematičeskie zametki, Tome 3 (1968) no. 1, pp. 85-92. http://geodesic.mathdoc.fr/item/MZM_1968_3_1_a10/