Example of an independent system of words which cannot be included in a finite complete system
Matematičeskie zametki, Tome 1 (1967) no. 1, pp. 87-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1967_1_1_a10,
     author = {Al. A. Markov},
     title = {Example of an independent system of words which cannot be included in a finite complete system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {87--90},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1967_1_1_a10/}
}
TY  - JOUR
AU  - Al. A. Markov
TI  - Example of an independent system of words which cannot be included in a finite complete system
JO  - Matematičeskie zametki
PY  - 1967
SP  - 87
EP  - 90
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1967_1_1_a10/
LA  - ru
ID  - MZM_1967_1_1_a10
ER  - 
%0 Journal Article
%A Al. A. Markov
%T Example of an independent system of words which cannot be included in a finite complete system
%J Matematičeskie zametki
%D 1967
%P 87-90
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1967_1_1_a10/
%G ru
%F MZM_1967_1_1_a10
Al. A. Markov. Example of an independent system of words which cannot be included in a finite complete system. Matematičeskie zametki, Tome 1 (1967) no. 1, pp. 87-90. http://geodesic.mathdoc.fr/item/MZM_1967_1_1_a10/