Spectral distinguishing attacks on Luby – Rackoff schemes based on independent two-block texts
Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 4, pp. 23-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Luby-Rackoff scheme the matrix $\mathbb{P}$ of transition probabilities of round differences is considered. We find spectrum and eigenspaces of $\mathbb{P}$, matrices $\mathbb{P}^2$ and $\mathbb{P}^4$. In the model of independent two-block texts observation we calculate characteristics of one-vector and two-vector spectral distinguishing attacks.
@article{MVK_2024_15_4_a2,
     author = {O. V. Denisov},
     title = {Spectral distinguishing attacks on {Luby} {\textendash} {Rackoff} schemes based on independent two-block texts},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {23--42},
     year = {2024},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a2/}
}
TY  - JOUR
AU  - O. V. Denisov
TI  - Spectral distinguishing attacks on Luby – Rackoff schemes based on independent two-block texts
JO  - Matematičeskie voprosy kriptografii
PY  - 2024
SP  - 23
EP  - 42
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a2/
LA  - ru
ID  - MVK_2024_15_4_a2
ER  - 
%0 Journal Article
%A O. V. Denisov
%T Spectral distinguishing attacks on Luby – Rackoff schemes based on independent two-block texts
%J Matematičeskie voprosy kriptografii
%D 2024
%P 23-42
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a2/
%G ru
%F MVK_2024_15_4_a2
O. V. Denisov. Spectral distinguishing attacks on Luby – Rackoff schemes based on independent two-block texts. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 4, pp. 23-42. http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a2/

[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik, v 2 t., v. 2, Gelios ARV, M., 2003, 416 pp.

[2] Denisov O. V., “Spektralnyi kriterii dlya proverki gipotez o sluchainykh podstanovkakh”, Matematicheskie voprosy kriptografii, 7:3 (2016), 19–28 | DOI | MR | Zbl

[3] Denisov O. V., “Ataki razlicheniya na blochnye shifrsistemy po raznostyam dvublochnykh tekstov”, Prikladnaya diskretnaya matematika, 2020, no. 48, 43–62 | DOI | Zbl

[4] Denisov O. V., “Spektralnyi veroyatnostno-statisticheskii analiz markovskikh shifrov”, Prikladnaya diskretnaya matematika, 2021, no. 53, 12–31 | DOI

[5] Denisov O. V., “Ataki razlicheniya na chetyre raunda shifra Lyubi-Rakoff po raznostyam dvublochnykh tekstov”, Prikladnaya diskretnaya matematika, Prilozhenie, 2023, no. 16, 32–35

[6] Denisov O. V., “Raznostnye svoistva sluchainykh otobrazhenii i ikh kompozitsii”, Matematicheskie voprosy kriptografii, 15:1 (2024), 5–20 | DOI | Zbl

[7] Denisov O. V., Ramodanov S. M., “Raznostno-lineinye ataki razlicheniya na blochnye shifry”, Prikladnaya diskretnaya matematika, Prilozhenie, 2024, no. 17, 81–90

[8] Karlin S., Osnovy teorii sluchainykh protsessov, Mir, M., 1971, 536 pp.

[9] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR

[10] Tsaregorodtsev K. D., “Shifrovanie, sokhranyayuschee format: obzor”, Matematicheskie voprosy kriptografii, 13:2 (2022), 133–153 | DOI | MR | Zbl

[11] Albrecht M., Leander G., “An all-in-one approach to differential cryptanalysis for small block ciphers”, SAC-2012, Lect. Notes Comput. Sci., 7707, 2013, 1–15 | DOI | Zbl

[12] Bellare M., Ristenpart T., Rogaway P., Stegers T., “Format-preserving encryption”, SAC-2009, Lect. Notes Comput. Sci., 5867, 2009, 295–312 | DOI | Zbl

[13] Bellare M., Hoang V., Tessaro S., “Message-recovery attacks on Feistel-based format preserving encryption”, Proc. 2016 ACM SIGSAC Conf. Comput. and Commun. Security, 2016, 444-455 | DOI

[14] Luby M., Rackoff C., “How to construct pseudorandom permutations from pseudorandom functions”, SIAM J. Comput., 17 (1988), 373–386 | DOI | MR | Zbl

[15] Nachef V., Patarin J., Volte E., Feistel ciphers: security proofs and cryptanalysis, Springer, 2017, 309 pp. | MR | Zbl

[16] Patarin J., “Security of random Feistel schemes with 5 or more rounds”, Crypto-2004, Lect. Notes Comput. Sci., 3152, 2004, 106–122 | DOI | MR | Zbl