@article{MVK_2024_15_4_a2,
author = {O. V. Denisov},
title = {Spectral distinguishing attacks on {Luby} {\textendash} {Rackoff} schemes based on independent two-block texts},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {23--42},
year = {2024},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a2/}
}
TY - JOUR AU - O. V. Denisov TI - Spectral distinguishing attacks on Luby – Rackoff schemes based on independent two-block texts JO - Matematičeskie voprosy kriptografii PY - 2024 SP - 23 EP - 42 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a2/ LA - ru ID - MVK_2024_15_4_a2 ER -
O. V. Denisov. Spectral distinguishing attacks on Luby – Rackoff schemes based on independent two-block texts. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 4, pp. 23-42. http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a2/
[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Uchebnik, v 2 t., v. 2, Gelios ARV, M., 2003, 416 pp.
[2] Denisov O. V., “Spektralnyi kriterii dlya proverki gipotez o sluchainykh podstanovkakh”, Matematicheskie voprosy kriptografii, 7:3 (2016), 19–28 | DOI | MR | Zbl
[3] Denisov O. V., “Ataki razlicheniya na blochnye shifrsistemy po raznostyam dvublochnykh tekstov”, Prikladnaya diskretnaya matematika, 2020, no. 48, 43–62 | DOI | Zbl
[4] Denisov O. V., “Spektralnyi veroyatnostno-statisticheskii analiz markovskikh shifrov”, Prikladnaya diskretnaya matematika, 2021, no. 53, 12–31 | DOI
[5] Denisov O. V., “Ataki razlicheniya na chetyre raunda shifra Lyubi-Rakoff po raznostyam dvublochnykh tekstov”, Prikladnaya diskretnaya matematika, Prilozhenie, 2023, no. 16, 32–35
[6] Denisov O. V., “Raznostnye svoistva sluchainykh otobrazhenii i ikh kompozitsii”, Matematicheskie voprosy kriptografii, 15:1 (2024), 5–20 | DOI | Zbl
[7] Denisov O. V., Ramodanov S. M., “Raznostno-lineinye ataki razlicheniya na blochnye shifry”, Prikladnaya diskretnaya matematika, Prilozhenie, 2024, no. 17, 81–90
[8] Karlin S., Osnovy teorii sluchainykh protsessov, Mir, M., 1971, 536 pp.
[9] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR
[10] Tsaregorodtsev K. D., “Shifrovanie, sokhranyayuschee format: obzor”, Matematicheskie voprosy kriptografii, 13:2 (2022), 133–153 | DOI | MR | Zbl
[11] Albrecht M., Leander G., “An all-in-one approach to differential cryptanalysis for small block ciphers”, SAC-2012, Lect. Notes Comput. Sci., 7707, 2013, 1–15 | DOI | Zbl
[12] Bellare M., Ristenpart T., Rogaway P., Stegers T., “Format-preserving encryption”, SAC-2009, Lect. Notes Comput. Sci., 5867, 2009, 295–312 | DOI | Zbl
[13] Bellare M., Hoang V., Tessaro S., “Message-recovery attacks on Feistel-based format preserving encryption”, Proc. 2016 ACM SIGSAC Conf. Comput. and Commun. Security, 2016, 444-455 | DOI
[14] Luby M., Rackoff C., “How to construct pseudorandom permutations from pseudorandom functions”, SIAM J. Comput., 17 (1988), 373–386 | DOI | MR | Zbl
[15] Nachef V., Patarin J., Volte E., Feistel ciphers: security proofs and cryptanalysis, Springer, 2017, 309 pp. | MR | Zbl
[16] Patarin J., “Security of random Feistel schemes with 5 or more rounds”, Crypto-2004, Lect. Notes Comput. Sci., 3152, 2004, 106–122 | DOI | MR | Zbl