Properties of classes of Boolean functions constructed from several linear recurrences over a residue ring $\mathbb{Z}_{2^n}$
Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 4, pp. 9-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper defines a class of Boolean functions constructed from higher bit sequences of several linear recurrences over the ring $\mathbb{Z}_{2^n}.$ To build the higher bit sequences various coordinate sets are used. It is shown that this class consists of functions that are significantly far from the class of all linear functions.
@article{MVK_2024_15_4_a1,
     author = {A. D. Bugrov and O. V. Kamlovskii},
     title = {Properties of classes of {Boolean} functions constructed from several linear recurrences over a residue ring $\mathbb{Z}_{2^n}$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {9--22},
     year = {2024},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a1/}
}
TY  - JOUR
AU  - A. D. Bugrov
AU  - O. V. Kamlovskii
TI  - Properties of classes of Boolean functions constructed from several linear recurrences over a residue ring $\mathbb{Z}_{2^n}$
JO  - Matematičeskie voprosy kriptografii
PY  - 2024
SP  - 9
EP  - 22
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a1/
LA  - ru
ID  - MVK_2024_15_4_a1
ER  - 
%0 Journal Article
%A A. D. Bugrov
%A O. V. Kamlovskii
%T Properties of classes of Boolean functions constructed from several linear recurrences over a residue ring $\mathbb{Z}_{2^n}$
%J Matematičeskie voprosy kriptografii
%D 2024
%P 9-22
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a1/
%G ru
%F MVK_2024_15_4_a1
A. D. Bugrov; O. V. Kamlovskii. Properties of classes of Boolean functions constructed from several linear recurrences over a residue ring $\mathbb{Z}_{2^n}$. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 4, pp. 9-22. http://geodesic.mathdoc.fr/item/MVK_2024_15_4_a1/

[1] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, Uchebnik, v. 2, Gelios ARV, M., 2003, 416 pp.

[2] Lidl R., Niderraiter G., Konechnye polya, v. 1, 2, Mir, M., 1988, 822 pp.

[3] Nechaev A.A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Mat. sb., 184:3 (1993), 21–56 | Zbl

[4] Kuzmin A.S., Nechaev A.A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR | Zbl

[5] Kamlovskii O.V., “Metod trigonometricheskikh summ dlya issledovaniya chastot $r$-gramm v starshikh koordinatnykh posledovatelnostyakh lineinykh rekurrent nad koltsom $\mathbb{Z}_{2^n}$”, Matematicheskie voprosy kriptografii, 1:4 (2010), 33–62 | DOI | Zbl

[6] Bylkov D.N., Kamlovskii O.V., “Parametry bulevykh funktsii, postroennykh s ispolzovaniem starshikh koordinatnykh posledovatelnostei lineinykh rekurrent”, Matematicheskie voprosy kriptografii, 3:4 (2012), 25–53 | DOI | Zbl

[7] Bylkov D.N., “Ob odnom klasse bulevykh funktsii, postroennykh s ispolzovaniem starshikh razryadnykh posledovatelnostei lineinykh rekurrent”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 59–60

[8] Kamlovskii O.V., “Nelineinost odnogo klassa bulevykh funktsii, postroennykh s ispolzovaniem dvoichnykh razryadnykh posledovatelnostei lineinykh rekurrent nad koltsom $\mathbb{Z}_{2^n}$”, Matematicheskie voprosy kriptografii, 7:3 (2016), 29–46 | DOI | MR | Zbl

[9] Bugrov A.D., Kamlovskii O.V., “Parametry odnogo klassa funktsii, zadannykh na konechnom pole”, Matematicheskie voprosy kriptografii, 9:4 (2018), 31–52 | DOI | MR | Zbl

[10] Gruba A.A., “Bulevy funktsii, postoennye s ispolzovaniem razryadnykh posledovatelnostei lineinykh rekurrent”, Diskretnaya matematika, 35:1 (2023), 54–61 | DOI

[11] Kamlovskii O.V., Kuzmin A.S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundam. i prikl. matematika, 6:4 (2000), 1083–1094 | MR | Zbl

[12] Ambrosimov A.S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl

[13] Solodovnikov V.I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113 | DOI | Zbl

[14] Logachev O.A., Salnikov A.A., Smyshlyaev S.V., Yaschenko V.V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012, 584 pp.

[15] Shparlinski I.E., Winterhof A., “On the nonlinearity of linear recurrence sequences”, Appl. Math. Letters, 19:4 (2006), 340–344 | DOI | MR | Zbl

[16] Bylkov D.N., “Klass uslozhnenii lineinykh rekurrent nad koltsom Galua, ne privodyaschii k potere informatsii”, Problemy peredachi informatsii, 46:3 (2010), 51–59 | MR | Zbl