@article{MVK_2024_15_2_a6,
author = {K. D. Tsaregorodtsev},
title = {Privacy and integrity properties of $\mathrm{ECIES}$ scheme},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {101--136},
year = {2024},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_2_a6/}
}
K. D. Tsaregorodtsev. Privacy and integrity properties of $\mathrm{ECIES}$ scheme. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 2, pp. 101-136. http://geodesic.mathdoc.fr/item/MVK_2024_15_2_a6/
[1] Martínez G. V., Encinas L. H., “A comparison of the standardized versions of ECIES”, Sixth Int. Conf. Inf. Assurance and Security, IEEE, 2010
[2] Martínez G. V., Encinas L. H., Dios A. Q., “Security and practical considerations when implementing the elliptic curve integrated encryption scheme”, Cryptologia, 39:3 (2015), 244–269, Taylor Francis | DOI
[3] Shoup V., A proposal for an ISO standard for public key encryption, IACR Cryptology ePrint Archive, Paper 2001/112, , 2001 https://eprint.iacr.org/2001/112
[4] Abdalla M., Bellare M., Rogaway P., “The Oracle Diffie-Hellman assumptions and an analysis of DHIES”, CT-RSA 2001, Lect. Notes Comput. Sci., 2020, 2001, 143–158 | DOI | MR | Zbl
[5] Smart N., “The exact security of ECIES in the generic group model”, Cryptography and Coding, Lect. Notes Comput. Sci., 2260, 2001, 73–84 | DOI | MR | Zbl
[6] Bellare M., Namprempre C., “Authenticated encryption: Relations among notions and analysis of the generic composition paradigm”, J. Cryptology, 21:4 (2008), 469–491, Springer | DOI | MR
[7] Boyd C., Mathuria A., Stebila D., Protocols for authentication and key establishment, 2nd edition, Springer, Berlin–Heidelberg, 2020, 521 pp. | Zbl
[8] Nesterenko A. Yu., Semenov A. M., “Metodika otsenki bezopasnosti kriptograficheskikh protokolov”, Prikl. diskr. matem., 2022, no. 56, 33–82 | DOI
[9] 3GPP, Security architecture and procedures for 5G System (3GPP TS 33.501 version 17.5.0 Release 17), Technical specification (TS), 2022
[10] Rekomendatsii po standartizatsii R1323565.1.026-2019. Informatsionnaya tekhnologiya (IT). Kriptograficheskaya zaschita informatsii. Rezhimy raboty blochnykh shifrov, realizuyuschie autentifitsirovannoe shifrovanie, Standartinform, M., 2019, 12+IV pp.
[11] Nozdrunov V., “Parallel and double block cipher mode of operation (PD-mode) for authenticated encryption”, Preproceedings, 6th Workshop on Current Trends in Cryptology (CTCrypt 2017), 2017, 36–45
[12] Mezhgosudarstvennyi standart GOST 34.13-2018. Informatsionnaya tekhnologiya (IT). Kriptograficheskaya zaschita informatsii. Rezhimy raboty blochnykh shifrov, Standartinform, M., 2018, 24+V pp.
[13] Rekomendatsii po standartizatsii R 50.1.113-2016. Informatsionnaya tekhnologiya (IT). Kriptograficheskaya zaschita informatsii. Kriptograficheskie algoritmy, soputstvuyuschie primeneniyu algoritmov elektronnoi tsifrovoi podpisi i funktsii kheshirovaniya, Standartinform, M., 2016, 24+IV pp.
[14] Alekseev E. K., Oshkin I. B., Popov V. O., Smyshlyaev S. V., “O kriptograficheskikh svoistvakh algoritmov, soputstvuyuschikh primeneniyu standartov GOST R 34.11-2012 i GOST R 34.10-2012”, Matematicheskie voprosy kriptografii, 7:1 (2016), 5–38 | DOI | MR | Zbl
[15] Katz J., Lindell Y., Introduction to modern cryptography, CRC press, Boca Raton, Florida, 2020, 626 pp. | MR
[16] Guo F., Susilo W., Mu Y., Introduction to security reduction, Springer, Cham, Switzerland, 2018, 253 pp. | Zbl
[17] Bellare M., Rogaway P., “The security of triple encryption and a framework for code-based game-playing proofs”, EUROCRYPT 2006, Lect. Notes Comput. Sci., 4004, 2006, 409–426 | DOI | MR | Zbl
[18] Nechaev V. I., “K voprosu o slozhnosti determinirovannogo algoritma dlya diskretnogo logarifma”, Matem. zametki, 55:2 (1994), 91–101 | MR | Zbl
[19] Shoup V., “Lower bounds for discrete logarithms and related problems”, EUROCRYPT 1997, Lect. Notes Comput. Sci., 1233, 1997, 256–266 | DOI | MR
[20] Mezhgosudarstvennyi standart GOST 34.12-2018. Informatsionnaya tekhnologiya (IT). Kriptograficheskaya zaschita informatsii. Blochnye shifry, Standartinform, M., 2018, iv+13 pp.
[21] Bellare M., Goldreich O., Mityagin A., The power of verification queries in message authentication and authenticated encryption, IACR Cryptology ePrint Archive, Paper 2004/309, , 2004 https://eprint.iacr.org/2004/309
[22] Rogaway P., “Evaluation of some blockcipher modes of operation”, Cryptography Research and Evaluation Committees (CRYPTREC) for the Government of Japan, 2011
[23] Iwata T., Kurosawa K., “Stronger security bounds for OMAC, TMAC, and XCBC”, INDOCRYPT 2003, Lect. Notes Comput. Sci., 2904, 2003, 402–415 | DOI | MR | Zbl
[24] Nandi M., “Improved security analysis for OMAC as a pseudorandom function”, J. Math. Cryptology, 3:2 (2009), 133–148, Walter de Gruyter GmbH Co. KG | DOI | MR
[25] Chattopadhyay S., Jha A., Nandi M., “Towards tight security bounds for OMAC, XCBC and TMAC”, ASIACRYPT 2022, Lect. Notes Comput. Sci., 13791, 2023, 348–378 | DOI | MR | Zbl
[26] Ahmetzyanova L., Alekseev E., Oshkin I., Smyshlyaev S., Sonina L., “On the properties of the CTR encryption mode of Magma and Kuznyechik block ciphers with re-keying method based on CryptoPro Key Meshing”, Matematicheskie voprosy kriptografii, 8:2 (2017), 39–50 | DOI | MR | Zbl
[27] Bellare M., Rogaway P., “Random oracles are practical: A paradigm for designing efficient protocols”, 1st ACM Conf. Computer Communic. Security, Association for Computing Machinery, New York, NY, USA, 1993, 62–73
[28] Koblitz N., Menezes A., “The random oracle model: a twenty-year retrospective”, Designs, Codes and Cryptography, 77 (2015), 587–610, Springer | DOI | MR