A quantum scheme for attack on a phase-time encoded quantum cryptography protocol
Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 2, pp. 91-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main property of quantum cryptography is the ability to rigorously prove security against any attack. However, any security proof is complex and may contain errors. Incompleteness of the security proof creates a risk of vulnerability, i.e., a situation in which the eavesdropper has full or partial knowledge of the cryptographic key. In this paper, we propose a quantum attack scheme against a two-parameter quantum cryptography protocol with phase-time coding that demonstrates its vulnerability. It is shown that the constructed attack is relatively simple and requires only three additional qubits. The errors in the security proof that made the constructed attack possible are discussed.
@article{MVK_2024_15_2_a5,
     author = {D. A. Kronberg},
     title = {A quantum scheme for attack on a phase-time encoded quantum cryptography protocol},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {91--100},
     year = {2024},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_2_a5/}
}
TY  - JOUR
AU  - D. A. Kronberg
TI  - A quantum scheme for attack on a phase-time encoded quantum cryptography protocol
JO  - Matematičeskie voprosy kriptografii
PY  - 2024
SP  - 91
EP  - 100
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2024_15_2_a5/
LA  - ru
ID  - MVK_2024_15_2_a5
ER  - 
%0 Journal Article
%A D. A. Kronberg
%T A quantum scheme for attack on a phase-time encoded quantum cryptography protocol
%J Matematičeskie voprosy kriptografii
%D 2024
%P 91-100
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2024_15_2_a5/
%G ru
%F MVK_2024_15_2_a5
D. A. Kronberg. A quantum scheme for attack on a phase-time encoded quantum cryptography protocol. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 2, pp. 91-100. http://geodesic.mathdoc.fr/item/MVK_2024_15_2_a5/

[1] Portmann C., Renner R., “Security in quantum cryptography”, Reviews of Modern Physics, 94:2 (2022), 025008 | DOI | MR

[2] Trushechkin A. S., “Ob operatsionnom smysle i prakticheskikh aspektakh ispolzovaniya parametra stoikosti v kvantovom raspredelenii klyuchei”, Kvantovaya elektronika, 50:5 (2020), 426–439

[3] Kronberg D. A., “Uyazvimost kvantovoi kriptografii s fazovo-vremennym kodirovaniem v usloviyakh zatukhaniya”, Teor. matem. fizika, 214:1 (2023), 140–152 | DOI | MR | Zbl

[4] Molotkov S. N., “Tight finite-key analysis for two-parametric quantum key distribution”, Laser Physics Letters, 16:3 (2019), 035203 | DOI

[5] Molotkov S. N., “O stoikosti sistem kvantovoi kriptografii s fazovo-vremennym kodirovaniem k atakam aktivnogo zondirovaniya”, Zh. eksp. teor. fiz., 158:6 (2020), 1011–1031 | DOI

[6] Gottesman D., Lo H. K., Lutkenhaus N., Preskill J., “Security of quantum key distribution with imperfect devices”, Quant. Inf. Comput., 4:5 (2004), 325–360 | MR | Zbl

[7] Kronberg D. A., “Success probability for postselective transformations of pure quantum states”, Phys. Rev. A, 106:4 (2022), 42447 | DOI | MR

[8] Lo H.-K., Ma X., Chen K., “Decoy state quantum key distribution”, Phys. Rev. Lett., 94:23 (2005), 230504 | DOI

[9] Molotkov S. N., “O kriptograficheskoi stoikosti sistemy kvantovoi kriptografii s fazovo-vremennym kodirovaniem”, Zh. eksp. teor. fiz., 133:1 (2008), 5–24

[10] Kronberg D. A., Molotkov S. N., “Dvukhparametricheskaya kvantovaya kriptografiya na vremennykh sdvigakh, ustoichivaya k atake s rasschepleniem po chislu fotonov”, Zh. eksp. teor. fiz., 136:4 (2009), 650–683