@article{MVK_2024_15_2_a4,
author = {Yu. V. Kosolapov and E. A. Lelyuk},
title = {The {McEliece-type} cryptosystem based on $D$-codes},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {69--90},
year = {2024},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_2_a4/}
}
Yu. V. Kosolapov; E. A. Lelyuk. The McEliece-type cryptosystem based on $D$-codes. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 2, pp. 69-90. http://geodesic.mathdoc.fr/item/MVK_2024_15_2_a4/
[1] Bernstein D. J., Chou T., Lange T., von Maurich I., Misoczki R., Niederhagen R., Persichetti E., Peters Ch., Schwabe P., Sendrier N., Szefer J., Wang W., Classic McEliece: conservative code-based cryptography, NIST submissions, 2017
[2] Post-Quantum Cryptography, National Institute of Standards and Technology (NIST) http://csrc.nist.gov/projects/post-quantum-cryptography
[3] Niederreiter H., “Knapsack-type cryptosystems and algebraic coding theory”, Prob. Contr. Inform. Theory, 15:2 (1986), 157–166 | MR
[4] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | Zbl
[5] Janwa H., Moreno O., “McEliece public key cryptosystems using algebraic-geometric codes”, Designs, Codes and Cryptography, 8:3 (1996), 293–307 | DOI | MR | Zbl
[6] Baldi M., Bianchi M., Chiaraluce F., “Security and complexity of the McEliece cryptosystem based on quasi-cyclic low-density parity-check codes”, IET Inf. Security, 7:3 (2013), 212–220 | DOI
[7] Sidelnikov V. M., Shestakov S. O., “O sisteme shifrovaniya, postroennoi na osnove obobschennykh kodov Rida–Solomona”, Diskretnaya matematika, 4:3 (1992), 57–63 | Zbl
[8] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, EUROCRYPT 2007, Lect. Notes Comput. Sci., 4515, 2007, 347–360 | DOI | MR | Zbl
[9] Borodin M. A., Chizhov I. V., “Effektivnaya ataka na kriptosistemu Mak-Elisa, postroennuyu na osnove kodov Rida–Mallera”, Diskretnaya matematika, 26:1 (2014), 10–20 | DOI | Zbl
[10] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inf. Theory, 63:8 (2017), 5404–5418 | DOI | MR | Zbl
[11] Fabšič T., Hromada V., Stankovski P., Zajac P., Guo Q., Johansson T., “A reaction attack on the QC-LDPC McEliece cryptosystem”, PQCrypto 2017, Lect. Notes Comput. Sci., 10346, 2017, 51–68 | DOI | MR | Zbl
[12] Couvreur A., Otmani A., Tillich J. P., “Polynomial time attack on wild McEliece over quadratic extensions”, IEEE Trans. Inf. Theory, 63:1 (2016), 404–427 | DOI | MR
[13] Elbro F., Majenz C., An algebraic attack against McEliece-like cryptosystems based on BCH codes, Cryptology ePrint Archive 2022/1715 https://eprint.iacr.org/2022/1715
[14] Couvreur A., Lequesne M., “On the security of subspace subcodes of Reed–Solomon codes for public key encryption”, IEEE Trans. Inf. Theory, 68:1 (2021), 632–648 | DOI | MR
[15] Egorova E., Kabatiansky G., Krouk E., Tavernier C., “A new code-based public-key cryptosystem resistant to quantum computer attacks”, J. Physics: Conf. Series, 1163:1, 012061, IOP Publishing | MR
[16] Zyablov V. V., Ivanov F. I., Kruk E. A., Sidorenko V. R., “O novykh zadachakh v asimmetrichnoi kriptografii, osnovannoi na pomekhoustoichivom kodirovanii”, Problemy peredachi informatsii, 58:2 (2022), 92–111 | Zbl
[17] Deundyak V. M., Kosolapov Y. V., Maystrenko I. A., “On the decipherment of Sidel'nikov-type cryptosystems”, CBCrypto 2020, Lect. Notes Comput. Sci., 12087, 2020, 20–40 | DOI | Zbl
[18] Vedenev K., Kosolapov Y., “Cryptanalysis of Ivanov–Krouk–Zyablov cryptosystem”, CBCrypto 2022, Lect. Notes Comput. Sci., 13839, 2023, 137–153 | DOI | Zbl
[19] Xu J., Chaichanavong P., Burd G., Wu Z., U.S. Patent No. 7,861,131, U.S. Patent and Trademark Office, Washington, DC, 2010
[20] Twitto M., Ari M. B., Dor A., Erez E., Kong J. J., Shany Y., U.S. Patent No. 10,333,554, U.S. Patent and Trademark Office, Washington, DC, 2019
[21] Yeo E., Yadav M. K., Chaichanavong P., Burd G., U.S. Patent No. 8,321,769, U.S. Patent and Trademark Office, Washington, DC, 2012
[22] Kosolapov Yu. V., Lelyuk E. A., “O strukturnoi stoikosti kriptosistemy tipa Mak-Elisa na summe tenzornykh proizvedenii binarnykh kodov Rida–Mallera”, Prikl. diskr. matem., 57 (2022), 22–39 | Zbl
[23] Kasami T., Lin S., “On the construction of a class of majority-logic decodable codes”, IEEE Trans. Inf. Theory, IT-17:5 (1971), 600–610 | DOI | MR | Zbl
[24] Deundyak V. M., Lelyuk E. A., “A graph-theoretical method for decoding some group MLD-codes”, J. Appl. Industr. Math., 14:2 (2020), 265–280 | DOI | MR | Zbl
[25] Morelos-Zaragoza R. H., The Art of Error Correcting Coding, John Wiley Sons, Ltd., 2006, 263 pp.
[26] Randriambololona H., “On products and powers of linear codes under componentwise multiplication”, Algorithmic Arithmetic Geometry Coding Theory, Contemporary Mathematics, 637, 2015, 3–78 | DOI | MR | Zbl
[27] Deundyak V. M., Kosolapov Yu. V., “O nekotorykh svoistvakh proizvedeniya Shura-Adamara dlya lineinykh kodov i ikh prilozheniyakh”, Prikl. diskr. matem., 50 (2020), 72–86 | MR | Zbl
[28] Slepian D., “Some further theory of group codes”, Bell Syst. Tech. J., 39:5 (1960), 1219–1252 | DOI | MR
[29] Abbe E., Shpilka A., Ye M., “Reed-Muller codes: Theory and algorithms”, IEEE Trans. Inf. Theory, 67:6 (2020), 3251–3277 | DOI | MR
[30] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 1978, 42–44
[31] Dottling N., Dowsley R., Muller-Quade J., Nascimento A.C.A., “A CCA secure variant of the McEliece cryptosystem”, IEEE Trans. Inf. Theory, 58 (2012), 6672–6680 | DOI | MR | Zbl
[32] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004 | MR
[33] Brent R., Gao S., Lauder A., “Random Krylov spaces over finite fields”, SIAM J. Discr. Math., 16:2 (2002), 276–287 | DOI | MR
[34] Deundyak V. M., Kosolapov Yu. V., Lelyuk E. A., “Decoding the tensor product of MLD codes and applications for code cryptosystems”, Autom. Contr. and Computer Sci., 52:7 (2018), 647–657 | DOI | MR
[35] Deundyak V.M., Kosolapov Yu.V., “Ispolzovanie tenzornogo proizvedeniya kodov Rida–Mallera v asimmetrichnoi kriptosisteme tipa Mak-Elisa i analiz ee stoikosti k atakam na shifrogrammu”, Vychislitelnye tekhnologii, 22:4 (2017), 43–60
[36] Prange E., “The use of information sets in decoding cyclic codes”, IRE Trans. Inf. Theory, 8:5 (1962), 5–9 | DOI | MR
[37] Borodin M. A., Chizhov I. V., “Klassifikatsiya proizvedenii Adamara podkodov korazmernosti 1 kodov Rida–Mallera”, Diskretnaya matematika, 32:1 (2020), 115–134 | DOI | MR
[38] Bernstein D. J., et al., Classic McEliece: conservative code-based cryptography: cryptosystem specification, NIST submissions, 2022
[39] Sidelnikov V. M., Pershakov A. S., “Dekodirovanie kodov Rida–Mallera pri bolshom chisle oshibok”, Probl. peredachi inform., 28:3 (1992), 80–94 | MR | Zbl
[40] Geiselhart M., Elkelesh A., Ebada M., Cammerer S., Ten Brink S., “Iterative Reed–Muller decoding”, 2021 11th Int. Symp. Topics in Coding (ISTC), IEEE, 2021, 1–5
[41] Kamenev M., Kameneva Y., Kurmaev O., Maevskiy A., “A new permutation decoding method for Reed–Muller codes”, 2019 IEEE Int. Symp. Inf. Theory (ISIT), IEEE, 2019, 26–30 | DOI
[42] Ye M., Abbe E., “Recursive projection-aggregation decoding of Reed–Muller codes”, IEEE Trans. Inf. Theory, 66:8 (2020), 4948–4965 | DOI | MR | Zbl
[43] Guo Q., Johansson T., Wagner P.S., “A key recovery reaction attack on QC-MDPC”, IEEE Trans. Inf. Theory, 65:3 (2019), 1845–1861 | DOI | MR | Zbl
[44] Vedenev K., Kosolapov Yu., Theoretical analysis of decoding failure rate of non-binary QC-MDPC codes, Cryptology ePrint Archive, Paper 2023/1224, 2023, 20 pp. | Zbl
[45] Baldi M., Barenghi A., Chiaraluce F., Pelosi G., Santini P., LEDAcrypt: Low-density parity-check code-based cryptographic systems. NIST round, 2, 2019 https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf