Reliability estimate of the maximum likelihood method used for the solution of systems of equations with distorted right parts
Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 1, pp. 83-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Reliability of method of maximum likelihood for the solution of systems of Boolean equations with the random choice of unknowns in each equation and with distortions in the right parts is investigated. In the left parts of the equations of these systems the given set Boolean functio Conditions under which reliability of method is close to unit are defined.
@article{MVK_2024_15_1_a4,
     author = {V. A. Kopyttsev},
     title = {Reliability estimate of the maximum likelihood method used for the solution of systems of equations with distorted right parts},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {83--95},
     year = {2024},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a4/}
}
TY  - JOUR
AU  - V. A. Kopyttsev
TI  - Reliability estimate of the maximum likelihood method used for the solution of systems of equations with distorted right parts
JO  - Matematičeskie voprosy kriptografii
PY  - 2024
SP  - 83
EP  - 95
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a4/
LA  - ru
ID  - MVK_2024_15_1_a4
ER  - 
%0 Journal Article
%A V. A. Kopyttsev
%T Reliability estimate of the maximum likelihood method used for the solution of systems of equations with distorted right parts
%J Matematičeskie voprosy kriptografii
%D 2024
%P 83-95
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a4/
%G ru
%F MVK_2024_15_1_a4
V. A. Kopyttsev. Reliability estimate of the maximum likelihood method used for the solution of systems of equations with distorted right parts. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a4/

[1] Borovkov A. A., Teoriya veroyatnostei, Uchebnik, Nauka, M., 1976, 352 pp.

[2] Balakin G. V., “Grafy dvuchlennykh sistem uravnenii s bulevymi neizvestnymi”, Teoriya veroyatn. i ee primen., 40:2 (1995), 241–259 | MR

[3] Balakin G. V., “Vvedenie v teoriyu sluchainykh sistem uravnenii”, Trudy po diskretnoi matematike, 1 (1997), 1–18 | Zbl

[4] Balakin G. V., “Sistemy sluchainykh bulevykh uravnenii so sluchainym vyborom neizvestnykh v kazhdom uravnenii”, Trudy po diskretnoi matematike, 3 (2000), 21–28

[5] Mikhailov V. G., “Predelnye teoremy dlya sluchainogo pokrytiya konechnogo mnozhestva i dlya chisla reshenii sistemy sluchainykh uravnenii”, Teoriya veroyatn. i ee primen., 41:2 (1996), 272–283 | DOI | MR | Zbl

[6] Mikhailov V. G., “Izuchenie predelnogo povedeniya chisla reshenii sistem uravnenii so sluchainym vkhozhdeniem neizvestnykh”, Matematicheskie voprosy kriptografii, 1:3 (2010), 27–49 | DOI

[7] Tarasov A. V., “Parametry metoda maksimalnogo pravdopodobiya pri ego ispolzovanii dlya resheniya sistem dvazhdy biyunktivnykh uravnenii s iskazhennymi pravymi chastyami”, Matematicheskie voprosy kriptografii, 11:3 (2020), 79–100 | DOI | Zbl

[8] Kopyttsev V. A., “O raspredelenii chisla reshenii sluchainykh zavedomo sovmestnykh sistem uravnenii”, Teoriya veroyatn. i ee primen., 40:2 (1995), 430–437 | MR

[9] Kopyttsev V. A., “Otsenka nadezhnosti metoda maksimalnogo pravdopodobiya pri ego ispolzovanii dlya resheniya sistem uravnenii s iskazheniyami v pravykh chastyakh”, Matematicheskie voprosy kriptografii, 14:3 (2023), 107–117 | DOI | MR