@article{MVK_2024_15_1_a3,
author = {V. A. Kiryukhin},
title = {On the security aspects of protocol {CRISP}},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {57--81},
year = {2024},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a3/}
}
V. A. Kiryukhin. On the security aspects of protocol CRISP. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 1, pp. 57-81. http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a3/
[1] GOST R 34.12-2015. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Blochnye shifry, Standartinform, M., 2015
[2] GOST R 34.13-2015. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Rezhimy raboty blochnykh shifrov, Standartinform, M., 2015
[3] R 1323565.1.005-2017. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Dopustimye ob'emy materiala dlya obrabotki na odnom klyuche pri ispolzovanii nekotorykh variantov rezhimov raboty blochnykh shifrov v sootvetstvii s GOST R 34.13-2015, Standartinform, M., 2017
[4] R 1323565.1.029-2019. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Protokol zaschischennogo obmena dlya industrialnykh sistem, Standartinform, M., 2020
[5] GOST R. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Protokol zaschischennogo obmena dlya industrialnykh sistem, Rossiiskii institut standartizatsii, M., 2024
[6] Izmenenie No 1 GOST 34.13-2018. Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Rezhimy raboty blochnykh shifrov, FGBU «RST», M., 2023
[7] Wegman M., Carter L., “New hash functions and their use in authentication and set equality”, J. Comput. System Sci., 22 (1981), 265–279 | DOI | MR | Zbl
[8] Black J., Halevi S., Krawczyk H., Krovetz T., Rogaway P., “UMAC: fast and secure message authentication”, CRYPTO '99, Lect. Notes Comput. Sci., 1666, 1999, 216–233 | DOI | MR | Zbl
[9] Bellare M., Rogaway P., Introduction to Modern Cryptography, Univ. of California at Davis, Davis, 2005
[10] Rogaway P., CRYPTREC 2011, Unpublished manuscript
[11] McGrew D. A., Viega J., “The security and performance of the Galois/Counter Mode (GCM) of operation”, INDOCRYPT 2004, Lect. Notes Comput. Sci., 3348, 2004, 343–355 | DOI | MR | Zbl
[12] Armando A. et al., “The AVISPA tool for the automated validation of internet security protocols and applications”, CAV 2005, Lect. Notes Comput. Sci., 3576, 2005, 281–285 | DOI | Zbl
[13] Canetti R., Krawczyk H., “Analysis of key-exchange protocols and their use for building secure channels”, EUROCRYPT 2001, Lect. Notes Comput. Sci., 2045, 2001, 453–474 | DOI | MR | Zbl
[14] LaMacchia B., Lauter K., Mityagin A., “Stronger security of authenticated key exchange”, ProvSec 2007, Lect. Notes Comput. Sci., 4784, 2007, 1–16 | DOI | Zbl
[15] Krawczyk H., “The order of encryption and authentication for protecting communications (or: how secure is SSL?)”, CRYPTO 2001, Lect. Notes Comput. Sci., 2139, 2001, 310–331 | DOI | MR | Zbl
[16] Canvel B., Hiltgen A., Vaudenay S., Vuagnoux M., “Password interception in a SSL/TLS channel”, CRYPTO 2003, Lect. Notes Comput. Sci., 2729, 2003, 583–599 | DOI | MR | Zbl
[17] Chang D., Nandi M., A short proof of the PRP/PRF Switching Lemma, Cryptology ePrint Archive, Report 2008/078, 2008 | MR
[18] Iwata T., Kurosawa K., “OMAC: one-key CBC MAC”, FSE 2003, Lect. Notes Comput. Sci., 2887, 2003, 129–153 | DOI | MR | Zbl
[19] Iwata T., Kurosawa K., “Stronger security bounds for OMAC, TMAC and XCBC”, INDOCRYPT 2003, Lect. Notes Comput. Sci., 2904, 2003, 402–415 | DOI | MR | Zbl
[20] Nandi M., “Improved security analysis for OMAC as a pseudorandom function”, J. Math. Cryptology, 3:2 (2009), 133–148 | DOI | MR | Zbl
[21] Chattopadhyay S., Jha A., Nandi M., “Towards tight security bounds for OMAC, XCBC and TMAC”, ASIACRYPT 2022, Lect. Notes Comput. Sci., 13791, 2022 | MR
[22] Shrimpron T., A characterization of authenticated-encryption as a form of chosen-ciphertext security, Cryptology ePrint Archive, Report 2004/272, 2004
[23] Kohno T., Palacio A., Black J., Building secure cryptographic transforms, or how to encrypt and MAC, Cryptology ePrint Archive, Report 2003/177, 2003
[24] Bellare M., Kohno T., Namprempre C., “Breaking and provably repairing the SSH authenticated encryption scheme: a case study of the encode-then-encrypt-and-MAC paradigm”, ACM Trans. Inf. Syst. Security, 7:2 (2004), 206–241 | DOI | Zbl
[25] Boyd C., Hale B., Mjølsnes S. F., Stebila D., “From stateless to stateful: generic authentication and authenticated encryption constructions with application to TLS”, Cryptographers Track at the RSA Conference 2016, Lect. Notes Comput. Sci., 9610, 2016, 55–71 | DOI | MR | Zbl
[26] Rogaway P., Zhang Y., “Simplifying game-based definitions indistinguishability up to correctness and its application to stateful AE”, CRYPTO 2018, Lect. Notes Comput. Sci., 10992, 2018, 3–32 | DOI | MR | Zbl
[27] Biham, E., Shamir, A., “Differential cryptanalysis of DES-like cryptosystems”, J. Cryptology, 1991, 3–72 | DOI | MR | Zbl
[28] Matsui M., “Linear cryptanalysis method for DES cipher”, EUROCRYPT'93, Lect. Notes Comput. Sci., 765, 1994, 386–397 | DOI | Zbl
[29] Isobe T., “A single-key attack on the full GOST block cipher”, FSE 2011, Lect. Notes Comput. Sci., 6733, 2011, 290–305 | DOI | MR | Zbl
[30] Dinur I., Dunkelman O., Shamir A., “Improved attacks on full GOST”, FSE 2012, Lect. Notes Comput. Sci., 7549, 2012, 9–28 | DOI | Zbl
[31] Kara O., Karakoc F., “Fixed points of special type and cryptanalysis of full GOST”, CANS 2012, Lect. Notes Comput. Sci., 7712, 2012, 86–97 | DOI
[32] Dmukh A. A., Dygin D. M., Marshalko G. B., “A lightweight-friendly modification of GOST block cipher”, Matematicheskie voprosy kroptografii, 5:2 (2014), 47–55 | DOI | Zbl
[33] Kiryukhin V., On security aspects of CRISP, Cryptology ePrint Archive, Report 2023/1303, 2023