Random $A$-permutations in a parametric model
Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 1, pp. 35-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider permutations of the set $X_n=\{1,2,\ldots,n\}$ such that lengths of all their cycles are elements of the subset $A\subset \{1,2,\ldots\}$. For a parametric probability measure on the set $S_n(A)$ properties of the cycle structure of a random permutation are studied for several types of subset $A$. The problems of testing corresponding statistical hypotheses on the model are analyzed.
@article{MVK_2024_15_1_a2,
     author = {G. I. Ivchenko and Yu. I. Medvedev},
     title = {Random $A$-permutations in a parametric model},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {35--55},
     year = {2024},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a2/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
TI  - Random $A$-permutations in a parametric model
JO  - Matematičeskie voprosy kriptografii
PY  - 2024
SP  - 35
EP  - 55
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a2/
LA  - ru
ID  - MVK_2024_15_1_a2
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%T Random $A$-permutations in a parametric model
%J Matematičeskie voprosy kriptografii
%D 2024
%P 35-55
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a2/
%G ru
%F MVK_2024_15_1_a2
G. I. Ivchenko; Yu. I. Medvedev. Random $A$-permutations in a parametric model. Matematičeskie voprosy kriptografii, Tome 15 (2024) no. 1, pp. 35-55. http://geodesic.mathdoc.fr/item/MVK_2024_15_1_a2/

[1] Goncharov V.L., “Iz oblasti kombinatoriki”, Izv. AN SSSR. Ser. matem., 8:1 (1944), 3–48 | Zbl

[2] Bolotnikov Yu.V., Sachkov V.N., Tarakanov V.E., “Asimptoticheskaya normalnost nekotorykh velichin, svyazannykh s tsiklovoi strukturoi sluchainykh podstanovok”, Matem. sb., 99:1 (1976), 121–133 | MR | Zbl

[3] Bolotnikov Yu.V., Sachkov V.N., Tarakanov V.E., “O nekotorykh klassakh sluchainykh velichin na tsiklakh podstanovok”, Matem. sb., 108:1 (1979), 91–104 | MR | Zbl

[4] Sachkov V.N., Vvedenie v kombinatornye metody diskretnoi matematiki, 2, MTsNMO, M., 2004, 424 pp. | MR

[5] Ivchenko G.I., Medvedev Yu.I., “Metod V. L. Goncharova i ego razvitie v analize razlichnykh modelei sluchainykh podstanovok”, Teoriya veroyatn. i ee primen., 47:3 (2002), 558–566 | DOI | Zbl

[6] Ivchenko G.I., Medvedev Yu.I., “O sluchainykh podstanovkakh”, Trudy po diskret. matem., 5, 2002, 73–92

[7] Ivchenko G.I., Medvedev Yu.I., “Sluchainye kombinatornye ob'ekty”, Doklady RAN, 396:2 (2004), 151–154 | MR | Zbl

[8] Ivchenko G.I., Medvedev Yu.I., “Sluchainye podstanovki: obschaya parametricheskaya model”, Diskret. matem., 18:4 (2006), 105–112 | DOI | MR | Zbl

[9] Ivchenko G.I., Medvedev Yu.I., Vvedenie v matematicheskuyu statistiku, LKI/URSS, M., 2010, 600 pp. | MR

[10] Petrov V.V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 320 pp.

[11] Ewens W. I., “The sampling theory of selectively neutral alleles”, Theor. Popul. Biol., 3:1 (1972), 87–112 | DOI | MR | Zbl

[12] Gruder O., “Zur Theorie der Zerlegung von Permutation in Ziklen”, Ark. Mat., 2:5 (1952), 385–414 | DOI | MR

[13] Vatutin V.A., Mikhailov V.G., “Predelnye teoremy dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami”, Teoriya veroyatn. i ee primen., 27:4 (1982), 684–692 | MR | Zbl

[14] Dzhonson N.L., Kots S., Kemp A., Odnomernye diskretnye raspredeleniya, Per. s angl., BINOM. Laboratoriya znanii, M., 2012, 559 pp.

[15] Yakymiv A.L., “Asimptotika momentov chisla tsiklov sluchainoi $A$-podstanovki s ostatochnym chlenom”, Diskret. matem., 31:3 (2019), 114–127 | DOI | MR

[16] Yakymiv A.L., “Dispersiya chisla tsiklov sluchainoi $A$-podstanovki”, Diskret. matem., 32:3 (2020), 135–146 | DOI | MR