$k$-homogeneous Latin Squares, their transversals and condition of pseudo-orthogonality
Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 3, pp. 75-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a method for transforming any system of $t$ mutually orthogonal Latin squares into a system of $t$ mutually pseudo-orthogonal Latin squares. We consider the $k$-homogeneous Latin Squares, i.e. Latin Squares of order $kn$ with elements from ${0,\dots,kn-1}$ such that after reducing modulo $n$ we obtain $(kn\times kn)$-matrix consisting of $k^2$ identical Latin Squares of order $n$. Some characteristics of transversals of $k$-homogeneous Latin Squares are described. Sufficient condition of pseudo-orthogonality is presented.
@article{MVK_2023_14_3_a4,
     author = {V. V. Borisenko},
     title = {$k$-homogeneous {Latin} {Squares,} their transversals and condition of pseudo-orthogonality},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {75--84},
     year = {2023},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a4/}
}
TY  - JOUR
AU  - V. V. Borisenko
TI  - $k$-homogeneous Latin Squares, their transversals and condition of pseudo-orthogonality
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 75
EP  - 84
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a4/
LA  - ru
ID  - MVK_2023_14_3_a4
ER  - 
%0 Journal Article
%A V. V. Borisenko
%T $k$-homogeneous Latin Squares, their transversals and condition of pseudo-orthogonality
%J Matematičeskie voprosy kriptografii
%D 2023
%P 75-84
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a4/
%G ru
%F MVK_2023_14_3_a4
V. V. Borisenko. $k$-homogeneous Latin Squares, their transversals and condition of pseudo-orthogonality. Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 3, pp. 75-84. http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a4/

[1] Sachkov V.N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004, 421 pp. | MR

[2] Sachkov V.N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977, 320 pp. | MR

[3] Sachkov V.N., Kurs kombinatornogo analiza, NITs «RKhD», Moskva–Izhevsk, 2013, 336 pp.

[4] Kholl M., Kombinatorika, Mir, M., 1970, 424 pp. | MR

[5] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, Lan, M., 2015, 608 pp.

[6] Borisenko V.V., “O transversalyakh raspavshikhsya latinskikh kvadratov chetnogo poryadka”, Matematicheskie voprosy kriptografii, 5:1 (2014), 5–25 | DOI | Zbl

[7] Borisenko V.V., “O transversalyakh odnorodnykh latinskikh kvadratov”, Matematicheskie voprosy kriptografii, 6:3 (2015), 5–17 | DOI | MR | Zbl

[8] Borisenko V.V., “O transversalyakh raspavshikhsya latinskikh kvadratov s tozhdestvennoi podstanovkoi $\chi_{ACDB}$”, Matematicheskie voprosy kriptografii, 11:1 (2020), 9–26 | DOI | MR | Zbl

[9] Borisenko V.V., “$k$-raspavshiesya i $k$-odnorodnye latinskie kvadraty i ikh transversali”, Matematicheskie voprosy kriptografii, 11:3 (2020), 5–19 | DOI | MR | Zbl

[10] Borisenko V.V., “$k$-odnorodnye latinskie kvadraty, ikh transversali i uslovie ortogonalnosti”, Matematicheskie voprosy kriptografii, 13:3 (2022), 45–54 | DOI | MR | Zbl

[11] Borisenko V.V., “Neprivodimye $n$-kvazigruppy sostavnogo poryadka”, Kvazigruppy i lupy», Matem. issled., 51, Shtiintsa, Kishinev, 1979, 38–42

[12] Bolshakova N.S., “Chislo peresechenii polnykh r-dolnykh grafov”, Diskretnaya matematika, 20:1 (2008), 70–79 | DOI | MR | Zbl

[13] Faruki Sh., Karte S.A., Garg M., “Psevdoortogonalnye latinskie kvadraty”, Diskretnaya matematika, 32:3 (2020), 113–129 | DOI

[14] Wanless I. M., “A generalisation of transversals for Latin squares”, R12, Electron. J. Comb., 9 (2002) | MR | Zbl