On properties of some sequences generated by shift registers and Latin squares
Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 3, pp. 35-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we analyze some properties of sequences generated by linear shift registers with primitive characteristic polynomial and Latin squares. For this particular kind of sequences we compute their periods and distribution of elements as well as other parameters of interest. Experimental results on entropy and distribution for particular instances are given. In addition, a new method for the construction of Latin squares which can be used in the generation of such sequences is presented.
@article{MVK_2023_14_3_a2,
     author = {R. R. Aulet and A. A. Pe\~nate},
     title = {On properties of some sequences generated by shift registers and {Latin} squares},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {35--47},
     year = {2023},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a2/}
}
TY  - JOUR
AU  - R. R. Aulet
AU  - A. A. Peñate
TI  - On properties of some sequences generated by shift registers and Latin squares
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 35
EP  - 47
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a2/
LA  - en
ID  - MVK_2023_14_3_a2
ER  - 
%0 Journal Article
%A R. R. Aulet
%A A. A. Peñate
%T On properties of some sequences generated by shift registers and Latin squares
%J Matematičeskie voprosy kriptografii
%D 2023
%P 35-47
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a2/
%G en
%F MVK_2023_14_3_a2
R. R. Aulet; A. A. Peñate. On properties of some sequences generated by shift registers and Latin squares. Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 3, pp. 35-47. http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a2/

[1] Fomichev V. M., Methods of Discrete Mathematics in Cryptology, Dialog-MEPhI Publ, 2010 (In Russian)

[2] Lidl R., Niederreiter H., Finite fields, Cambridge university press, 1997 | MR

[3] Fan X., Mandal K., Gong G., “Wg-8: A lightweight stream cipher for resource-constrained smart devices”, International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, 2013, 617–632 | DOI

[4] Kamlovskii O.V., “Distribution of $r$-tuples in one class of uniformly distributed sequences over residue rings”, Problems of Information Transmission, 50:1 (2014), 90–105 | DOI | MR | Zbl

[5] Kamlovskii O.V., “Equidistributed sequences over finite fields produced by one class of linear recurring sequences over residue rings”, Problems of Information Transmission, 50:1 (2014), 171–185 | DOI | MR | Zbl

[6] Sachkov V., Introduction to combinatorial methods of discrete mathematics, Nauka, M., 1982 (In Russian) | MR | Zbl

[7] Kamlovsky O. V., “The number of occurrences of elements in the output sequences of filter generators”, Applied discrete mathematics, 21:3 (2013), 11–25 (In Russian) | DOI

[8] Klein A., Stream ciphers, Springer, 2013 | MR | Zbl

[9] Kronthaler F., Zöllner S., Data Analysis with RStudio, Springer Spektrum, 2021

[10] Ivchenko G. I., Medvedev Y. I., Introduction to Mathematical statistics, 2010 (In Russian) | MR

[11] Kuipers L., Niederreiter H., Uniform distribution of sequences, J. Wiley and Sons, 1974 | MR | Zbl