Distribution of secret keys in a quantum network with trusted intermediate nodes
Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 3, pp. 9-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basic configuration in quantum cryptography is a point-to-point configuration. This technology is not applicable to a quantum network, where long-distance distribution of keys is required. In this paper we present a procedure for sequential transfer of an external $\varepsilon_{K}$-secret key through intermediate trusted nodes using $\varepsilon_{i}$-secret keys on separate network segments. It is shown that if the external key is $\varepsilon_{K}$-secret, then after transmission through the trusted node its secrecy becomes equal to $\varepsilon_{K}+\varepsilon_{1}$. The result is generalized to the entire length of the communication line. The secrecy of the transmitted key at the final point becomes $\varepsilon_{L}=\varepsilon_{K}+\sum_{i=1}^{L}\varepsilon_{i}$, where $L$ is the number of this line segments. It is shown that for any measurements of the eavesdropper leading to classical probability distributions the complexity of revealing the transmitted key in the class of algorithms based on the consideration of the most probable keys only are determined by the secrecy parameter $\varepsilon_{L}$.
@article{MVK_2023_14_3_a1,
     author = {I. M. Arbekov and S. N. Molotkov},
     title = {Distribution of secret keys in a quantum network with trusted intermediate nodes},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {9--33},
     year = {2023},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a1/}
}
TY  - JOUR
AU  - I. M. Arbekov
AU  - S. N. Molotkov
TI  - Distribution of secret keys in a quantum network with trusted intermediate nodes
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 9
EP  - 33
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a1/
LA  - ru
ID  - MVK_2023_14_3_a1
ER  - 
%0 Journal Article
%A I. M. Arbekov
%A S. N. Molotkov
%T Distribution of secret keys in a quantum network with trusted intermediate nodes
%J Matematičeskie voprosy kriptografii
%D 2023
%P 9-33
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a1/
%G ru
%F MVK_2023_14_3_a1
I. M. Arbekov; S. N. Molotkov. Distribution of secret keys in a quantum network with trusted intermediate nodes. Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 3, pp. 9-33. http://geodesic.mathdoc.fr/item/MVK_2023_14_3_a1/

[1] Wegman M.N., Carter L., “New hash functions and their use in authentication and set equality”, J. Comput. Syst. Sci., 22:265 (1981) | MR | Zbl

[2] Jiu-Peng Chen, Chi Zhang, Yang Liu, Cong Jiang, Weijun Zhang, Xiao-Long Hu, Jian-Yu Guan, Zong-Wen Yu, Hai Xu, Jin Lin, Ming-Jun Li, Hao Chen, Hao Li, Lixing You, Zhen Wang, Xiang-Bin Wang, Qiang Zhang, Jian-Wei Pan, “Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km”, Physical Review Letters, 124 (2020), 070501 | DOI | MR

[3] Molotkov S.N., Sinilshchikov Ilya V., “Quantum key distribution through untrusted nodes: exact solution for single-photon states”, Laser Physics Letters, 16 (2019), 105205 | DOI

[4] Renner R., Security of quantum key distribution, 2006, 11 pp., arXiv: quant-ph/0512258v2

[5] Portmann Ch., Renner R., Cryptographic security of quantum key distribution, 2014, arXiv: 1409.3525

[6] Arbekov I.M., “Lower bounds for the practical secrecy of a key”, Matematicheskie voprosy kriptografii, 8:2 (2017), 29–38 | DOI | MR | Zbl

[7] Arbekov I.M., Molotkov S.N., “Razlichimost kvantovykh sostoyanii i trudoemkost po Shennonu v kvantovoi kriptografii”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 151:6 (2017), 1–17

[8] Arbekov I.M., Elementarnaya kvantovaya kriptografiya: Dlya kriptografov, ne znakomykh s kvantovoi mekhanikoi, LENAND, M., 2022, 168 pp.

[9] Wilde M.M., From classical to quantum shannon theory, 2015, arXiv: 1106.1445v6

[10] Nilsen M., Chang I., Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006, 822 pp.

[11] Shannon C.E., A Mathematical Theory of Cryptography, v. III, 1945, 86 pp. https://www.iacr.org/museum/shannon/shannon45.pdf

[12] Shennon K., “Teoriya svyazi v sekretnykh sistemakh”, Raboty po teorii informatsii i kibernetike, IL, M., 1963, 333–402