@article{MVK_2023_14_2_a6,
author = {I. V. Lysakov},
title = {Solving some cryptanalytic problems for lattice-based cryptosystems with quantum annealing method},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {111--122},
year = {2023},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_2_a6/}
}
TY - JOUR AU - I. V. Lysakov TI - Solving some cryptanalytic problems for lattice-based cryptosystems with quantum annealing method JO - Matematičeskie voprosy kriptografii PY - 2023 SP - 111 EP - 122 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2023_14_2_a6/ LA - en ID - MVK_2023_14_2_a6 ER -
I. V. Lysakov. Solving some cryptanalytic problems for lattice-based cryptosystems with quantum annealing method. Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 2, pp. 111-122. http://geodesic.mathdoc.fr/item/MVK_2023_14_2_a6/
[1] Ajtai M., Kumar R., Sivakumar D., “A sieve algorithm for the shortest lattice vector problem”, Proc. 33th Annu. ACM Symp. Theory of Computing, STOC'01, 601–610 | MR | Zbl
[2] Aharonov D., Regev O., “A lattice problem in Quantum NP”, Proc. 44th Symp. Found. Comput. Sci., FOCS 2003, 2003, 210–219 | MR
[3] Cohen H., A Course in Computational Algebraic Number Theory, Springer Publ. Co., Berlin–Heidelberg, 2010 | MR
[4] D-Wave, https://www.dwavesys.com
[5] Elgamal T., “A public-key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans. Inf. Theory, 31 (1985), 469–472 | DOI | MR | Zbl
[6] Fincke U., Pohst M., “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis”, Math. Comp., 44 (1985), 463–471 | DOI | MR | Zbl
[7] Grover L. K., “A fast quantum mechanical algorithm for database search”, Proc. 28th Annu. ACM Symp. Theory of Computing, STOC'96, 1996, 212–219 | MR | Zbl
[8] Kadowaki T., Nishimori H., “Quantum annealing in the transverse Ising model”, Phys. Rev. E — Stat. Phys., 58:5 (1998), 5355–5363 | DOI
[9] Minkowski H., Geometrie der Zahlen, Teubner, Leipzig, 1910 | MR
[10] Joseph D., Callison A., Ling C., Mintert F., “Two quantum Ising algorithms for the shortest-vector problem: one for now and one for later”, Phys. Rev. A, 103:3 (2021), 032433 | DOI | MR
[11] Laarhoven T., Mosca M., J. van der Pol, “Solving the shortest vector problem in lattices faster using Quantum Search”, Lect. Notes Comput. Sci., 7932, 2013, 83–101 | DOI | Zbl
[12] Kannan R., “Improved algorithms for integer programming and related lattice problems”, Proc. 15th Annu. ACM Symp. Theory of Computing, STOC'83, 1983, 193–206
[13] Micciancio D., Voulgaris P., “A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations”, Proc. 42th Annu. ACM Symp. Theory of Computing, STOC'10, 2010, 351–358 | MR | Zbl
[14] NIST PQC, https://csrc.nist.gov/Projects/post-quantum-cryptography
[15] NTRU NIST PQC submission 2020, https://ntru.org/release/NIST-PQSubmission-NTRU-20201016.tar.gz
[16] Post M., “On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications”, ACM SIGSAM Bulletin, 15:1 (1981), 37–44 | DOI
[17] Rivest R. L., Shamir A., Adleman L., “A method for obtaining digital signatures and public-key cryptosystems”, Communic. ACM, 21:2 (1976), 120–126 | DOI | MR
[18] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM Review, 41:3 (1999), 303–322 | DOI | MR