Properties of the structure of random partitions of a finite set in parametric model
Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 1, pp. 45-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some structural properties of random partitions of a finite $n$-element set are investigated when a parametric probabilistic measure on the set of all partitions is defined. Asymptotic behavior of several structural characteristics (as $n \to \infty$) is studied: sets of numbers of blocks with given sizes, numbers of small and large blocks, numbers of blocks with medium sizes, extremal and related characteristics of structure.
@article{MVK_2023_14_1_a3,
     author = {G. I. Ivchenko and Yu. I. Medvedev},
     title = {Properties of the structure of random partitions of a finite set in parametric model},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {45--63},
     year = {2023},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_1_a3/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
TI  - Properties of the structure of random partitions of a finite set in parametric model
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 45
EP  - 63
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_1_a3/
LA  - ru
ID  - MVK_2023_14_1_a3
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%T Properties of the structure of random partitions of a finite set in parametric model
%J Matematičeskie voprosy kriptografii
%D 2023
%P 45-63
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_1_a3/
%G ru
%F MVK_2023_14_1_a3
G. I. Ivchenko; Yu. I. Medvedev. Properties of the structure of random partitions of a finite set in parametric model. Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 1, pp. 45-63. http://geodesic.mathdoc.fr/item/MVK_2023_14_1_a3/

[1] de Brein N.G., Asimptoticheskie metody v analize, IL, M., 1961

[2] Ivchenko G.I., Medvedev Yu.I., “Sluchainye kombinatornye ob'ekty v obschei parametricheskoi modeli”, Trudy po diskretnoi matematike, 10 (2007), 73–86

[3] Ivchenko G.I., Medvedev Yu.I., “Parametricheskie modeli sluchainykh kombinatornykh ob'ektov eksponentsialnogo tipa i voprosy ikh veroyatnostno-statisticheskogo analiza”, Matematicheskie voprosy kriptografii, 8:3 (2017), 41–56 | DOI | MR | Zbl

[4] Ivchenko G.I., Medvedev Yu.I., “Razbieniya bez malykh blokov i $r$-prisoedinennye polinomy Bella v parametricheskoi modeli: veroyatnostno-statisticheskii analiz”, Matematicheskie voprosy kriptografii, 10:1 (2019), 5–18 | DOI | MR

[5] Sachkov V.N., “Sluchainye razbieniya mnozhestv”, Teoriya veroyatn. i ee primen., 19:1 (1974), 178–194

[6] Sachkov V.N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978 | MR

[7] Arratia R., Tavare S., “Independent process approximations for random combinatorial structures”, Adv. Math., 104 (1994), 90–154 | DOI | MR | Zbl

[8] Bell E.T., “Exponential polynomials”, Ann. Math., 35:2 (1934), 258–277 | DOI | MR | Zbl

[9] Ewens W. J., “The sampling theory of selectively neutral alleles”, Theor. Popul. Biol., 3 (1972), 87–112 | DOI | MR | Zbl

[10] DeLaurentis J.M., Pittel B.G., “Counting subsets of the random partition and the “Brownian bridge” process”, Stochast. Proc. Appl., 15 (1983), 155–167 | DOI | MR | Zbl

[11] Goh W.M.J., Schmutz E., “Gap-free set partitions”, Random Structures and Algorithms, 3 (1992), 9–18 | DOI | MR | Zbl

[12] Hayman W.K., “A generalization of Stirling's formula”, J. reine angew. Math., 196 (1956), 67–95 | DOI | MR | Zbl

[13] Pittel B., “Random set partitions: asymptotics of subset counts”, J. Comb. Theory, Ser. A, 79 (1997), 326–359 | DOI | MR | Zbl