On approximations of Boolean functions by linear spreads
Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 1, pp. 15-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study approximations of Boolean functions by linear spreads, i. e. piecewise linear Boolean functions such that the domain of each piece is a linear manifold. The representation of the distance from the given Boolean function to the nearest linear spread is given in terms of spectral coefficients of the function. An algorithm for constructing the linear spread which is nearest to the given Boolean function for given spreading transform is suggested.
@article{MVK_2023_14_1_a1,
     author = {A. N. Veligura},
     title = {On approximations of {Boolean} functions by linear spreads},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {15--25},
     year = {2023},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2023_14_1_a1/}
}
TY  - JOUR
AU  - A. N. Veligura
TI  - On approximations of Boolean functions by linear spreads
JO  - Matematičeskie voprosy kriptografii
PY  - 2023
SP  - 15
EP  - 25
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2023_14_1_a1/
LA  - ru
ID  - MVK_2023_14_1_a1
ER  - 
%0 Journal Article
%A A. N. Veligura
%T On approximations of Boolean functions by linear spreads
%J Matematičeskie voprosy kriptografii
%D 2023
%P 15-25
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2023_14_1_a1/
%G ru
%F MVK_2023_14_1_a1
A. N. Veligura. On approximations of Boolean functions by linear spreads. Matematičeskie voprosy kriptografii, Tome 14 (2023) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/MVK_2023_14_1_a1/

[1] Logachev O.A., Salnikov A.A., Smyshlyaev S.V., Yaschenko V.V., Bulevy funktsii v teorii kodirovaniya i kriptologii, 2-e izd., MTsNMO, M., 2012

[2] Glukhov M.M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 | DOI | MR | Zbl

[3] Logachev O.A., Sukaev A.A., Fedorov S.N., “Ob odnom metode resheniya sistem kvadratichnykh bulevykh uravnenii, ispolzuyuschem lokalnye affinnosti”, Inform. i ee primen., 13:2 (2019), 37–46 | MR

[4] Babueva A.A., Logachev O.A., Yaschenko V.V., “O svyazi lokalnykh affinnostei bulevoi funktsii s nekotorymi vidami ee vyrozhdennosti”, Diskretnaya matematika, 34:2 (2022), 7–25 | DOI

[5] Tokareva N.N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Academic Publishing, Saarbrucken, 2011

[6] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, Elsevier, 2015 | MR | Zbl

[7] Yaschenko V.V., “O kriterii rasprostraneniya dlya bulevykh funktsii i o bent-funktsiyakh”, Problemy peredachi informatsii, 33:1 (1997), 75–86 | MR | Zbl

[8] Ivchenko G.I., Medvedev Yu.I., Mironova V.A., “Struktura spektrov bulevykh funktsii”, Matematicheskie voprosy kriptografii, 7:1 (2016), 57–70 | DOI | MR | Zbl