The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$
Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 3, pp. 107-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any nonabelian $2$-group $H_m$ with a subgroup of index $2$ (namely the dihedral group $D_{2^m}$, the generalized quaternion group $Q_{2^m}$, the modular maximal-cyclic group $M_{2^m}$, the quasidihedral group $SD_{2^m}$) we consider its simplest overgroups. In this way we describe properties of the group generated by the right and the left regular permutation representations of any $H_m$ including its structure, order, center, rang and estimate of the minimal degree. We characterise its automorphism group and all isomorphic embeddings of $H_m$ (of order $2^m$) into the affine group of the residue ring $\mathbb{Z}_{2^{m - 1}}$ if such embeddings exist.
@article{MVK_2022_13_3_a6,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index~$2$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {107--130},
     year = {2022},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a6/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$
JO  - Matematičeskie voprosy kriptografii
PY  - 2022
SP  - 107
EP  - 130
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a6/
LA  - ru
ID  - MVK_2022_13_3_a6
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$
%J Matematičeskie voprosy kriptografii
%D 2022
%P 107-130
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a6/
%G ru
%F MVK_2022_13_3_a6
B. A. Pogorelov; M. A. Pudovkina. The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$. Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 3, pp. 107-130. http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a6/

[1] Biham E., “New type of cryptanalytic attacks using related key”, EUROCRYPT'93, Lect. Notes Comput. Sci., 765, 1994, 229–246

[2] Hawkes1 P., O'Connor L., “XOR and Non-XOR differential probabilities”, EUROCRYPT'99, Lect. Notes Comput. Sci., 1592, 1999, 272–285 | DOI | MR

[3] Glukhov M. M., “O 2-tranzitivnykh proizvedeniyakh regulyarnykh grupp podstanovok”, Trudy po diskretnoi matematike, 3 (2000), 37–52

[4] Li L., Chen J., Jia K., “New impossible differential cryptanalysis of reduced round Camellia”, CANS 2011, Lect. Notes Comput. Sci., 7092, 2011, 26–39 | DOI | MR

[5] Vaudenay S., “Provable security for block ciphers by decorrelation”, STACS 98, Lect. Notes Comput. Sci., 1373, 1998, 249–275 | DOI | MR

[6] Patel S., Ramzan A., Sundaram G. S., “Luby-Rackoff ciphers: Why XOR is not so exclusive”, SAC 2002, Lect. Notes Comput. Sci., 2595, 2002, 271–290 | DOI | MR

[7] Hougaard H. B., 3-round Feistel is not superpseudorandom over any group, Cryptology ePrint Archive, Report 2021/675, , 2021 https://eprint.iacr.org/2021/675

[8] Friedl K., Ivanyos G., Magniez F., Santha M., Sen P., “Hidden translation and translating coset in quantum computing”, SIAM J. Comput., 43:1 (2014), 1–24 | DOI | MR

[9] Kuperberg G., “A subexponential-time quantum algorithm for the dihedral hidden subgroup problem”, SIAM J. Comput., 35:1 (2005), 170–188 | DOI | MR

[10] Kuwakado H., Morii M., “Quantum distinguisher between the 3-round Feistel cipher and the random permutation”, IEEE Int. Symp. Inf. Theory (ISIT 2010), 2010, 2682–2685

[11] Kuwakado H., Morii M., “Security on the quantum-type Even-Mansour cipher”, IEEE Int. Symp. Inf. Theory and Appl. (ISITA 2012), 2012, 312–316

[12] Bonnetain X., Hosoyamada A., Naya-Plasencia M., Sasaki Y., Schrottenloher A., “Quantum attacks without superposition queries: The offline Simon's algorithm”, ASIACRYPT 2019, Lect. Notes Comput. Sci., 11921, 2019, 552–583 | DOI

[13] Alagicd G., Russell A., “Quantum-secure symmetric-key cryptography based on hidden shifts”, EUROCRYPT 2017, Lect. Notes Comput. Sci., 10212, 2017, 65–93 | DOI | MR

[14] Kaplan M., Leurent G., Leverrier A., Naya-Plasencia M., “Breaking symmetric cryptosystems using quantum period finding”, CRYPTO 2016, Lect. Notes Comput. Sci., 9815, 2016, 207–237 | DOI | MR

[15] Pogorelov B. A., Pudovkina M.A., “Svoistva regulyarnykh predstavlenii neabelevykh 2-grupp s tsiklicheskoi podgruppoi indeksa 2”, Matematicheskie voprosy kriptografii, 12:4 (2021), 65–85 | MR

[16] Miller G. A., “Automorphisms of the dihedral groups”, Proc. Natl. Acad. Sci. USA, 28 (1942), 368–371 | DOI | MR

[17] Kato M., Automorphism group of the quaternion group https://math.stackexchange.com/questions/195932

[18] Zhu D. G., Zuo G. X., “The automorphism group and holomorph of quaternion group (in generalized sense)”, Acta Math. Sci. Ser. A, 25, 2005, 79–83 | MR

[19] Kohl T., “Multiple holomorphs of dihedral and quaternionic groups”, Comm. Algebra, 43:10 (2015), 4290–4304 | DOI | MR

[20] Schaefer J., Schlechtweg K., “On the structure of symmetric spaces of semidihedral groups”, Involve 2017, 10:4, 665–676 | MR

[21] Diskretnaya matematika. Entsiklopediya, Bolshaya Rossiiskaya entsiklopediya, M., 2004

[22] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.

[23] Pogorelov B. A., Osnovy teorii grupp podstanovok, v. 1, Obschie voprosy, v/ch 33965, M., 1986, 316 pp.

[24] Berkovich Y., Janko Z., Groups of prime power order, Expos. Math., 56, De Gruyter, 2011, 666 pp. | MR

[25] Conrad K., Generalized quaternions, 2010, 8 pp. www.semanticscholar.org.

[26] Berkovich Y., Groups of Prime Power Order, v. 1, De Gruyter Expos. Math., 46, W. de Gruyter GmbH Co., Berlin, 2008 | MR

[27] Glukhov M. M., Kruglov I. A., Pichkur I. B., Cheremushkin A. V., Vvedenie v teoretiko-chislovye metody kriptografii, Lan, SPb., 2011, 400 pp.