Random partitions with two-side bounds and $(r,s)$-Bell polynomials in a parametric probabilistic model
Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 3, pp. 77-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the set of all partitions of an $n$-element set $X_n = \{1,2,\ldots,n\}$ into blocks with sizes exceeding the number $r \geq 0$ and not exceeding the number $s \leq n$ a probability measure is defined such that the probability of each partition with $k$ blocks is proportional to $\theta^k$, where $\theta > 0$ is the parameter of measure. The $(r,s)$-Bell polynomials are introduced and their asymptotic are investigated for $n,r,s \to \infty$. The asymptotic normality of the numbers of blocks in a random partition of $X_n$ in this model is proved, a statistical test for the uniformity hypothesis $H_0\colon \theta = 1$ against the alternatives $H_0\colon \theta \ne 1$ is constructed.
@article{MVK_2022_13_3_a4,
     author = {G. I. Ivchenko and Yu. I. Medvedev},
     title = {Random partitions with two-side bounds and $(r,s)${-Bell} polynomials in a parametric probabilistic model},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {77--92},
     year = {2022},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a4/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
TI  - Random partitions with two-side bounds and $(r,s)$-Bell polynomials in a parametric probabilistic model
JO  - Matematičeskie voprosy kriptografii
PY  - 2022
SP  - 77
EP  - 92
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a4/
LA  - ru
ID  - MVK_2022_13_3_a4
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%T Random partitions with two-side bounds and $(r,s)$-Bell polynomials in a parametric probabilistic model
%J Matematičeskie voprosy kriptografii
%D 2022
%P 77-92
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a4/
%G ru
%F MVK_2022_13_3_a4
G. I. Ivchenko; Yu. I. Medvedev. Random partitions with two-side bounds and $(r,s)$-Bell polynomials in a parametric probabilistic model. Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 3, pp. 77-92. http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a4/

[1] Sachkov V.N., Vvedenie v kombinatornye metody diskretnoi matematiki, 2-e izd., MTsNMO, M., 2004, 424 pp. | MR

[2] Bell E.T., “Exponential polynomials”, Ann. Math., 35 (1934), 258–277 | DOI | MR

[3] Ivchenko G.I., Medvedev Yu.I., “Sluchainye kombinatornye ob'ekty”, Doklady RAN, 396:2 (2004), 151–154 | MR

[4] Ivchenko G.I., Medvedev Yu.I., Diskretnye raspredeleniya. Veroyatnostno-statisticheskii spravochnik: Odnomernye raspredeleniya, LENAND, M., 2015, 256 pp.

[5] Ivchenko G.I., Medvedev Yu.I., Diskretnye raspredeleniya. Veroyatnostno-statisticheskii spravochnik: Mnogomernye raspredeleniya, LENAND, M., 2016, 336 pp.

[6] Ivchenko G.I., Medvedev Yu.I., “Parametricheskie modeli sluchainykh kombinatornykh ob'ektov eksponentsialnogo tipa i voprosy ikh veroyatnostno-statisticheskogo analiza”, Matematicheskie voprosy kriptografii, 8:3 (2017), 41–56 | MR

[7] Ivchenko G.I., Medvedev Yu.I., “Razbieniya bez malykh blokov i $r$-prisoedinennye polinomy Bella v parametricheskoi modeli: veroyatnostno-statisticheskii analiz”, Matematicheskie voprosy kriptografii, 10:1 (2019), 5–18 | MR

[8] Timashev A.N., Bolshie ukloneniya v veroyatnostnoi kombinatorike, Izd. dom «Akademiya», M., 2011, 248 pp.

[9] Harper L., “Stirling behavior is asymptotically normal”, Ann. Math. Stat., 38:2 (1961), 410–414 | DOI | MR

[10] William M., Jet W., “On effective block size in Harper's theorem”, Math. Appl. Anal., 1:2 (1994), 119-142 | DOI | MR