Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits
Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 3, pp. 55-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sequence of random independent and uniformly distributed binary vectors $\vec x(t)$ and a sequence of random independent bits $y(t)$ are observed. Hypothesis $H_1\colon \{\vec x(t),y(t)$ are independent$\}$ is tested against $H_2\colon\{y(t)$ is corrupted value of $f(\vec x(t))\}$, the function $f$ essentially depends on an unknown part of the variables. We construct criteria based on sets of spectral statistics in situations of unknown $f$ or known $f$, and give asymptotic estimates of the volume of the size of the sample.
@article{MVK_2022_13_3_a3,
     author = {O. V. Denisov},
     title = {Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {55--76},
     year = {2022},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a3/}
}
TY  - JOUR
AU  - O. V. Denisov
TI  - Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits
JO  - Matematičeskie voprosy kriptografii
PY  - 2022
SP  - 55
EP  - 76
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a3/
LA  - ru
ID  - MVK_2022_13_3_a3
ER  - 
%0 Journal Article
%A O. V. Denisov
%T Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits
%J Matematičeskie voprosy kriptografii
%D 2022
%P 55-76
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a3/
%G ru
%F MVK_2022_13_3_a3
O. V. Denisov. Criteria for testing the hypothesis on a noisy functional dependency between random binary vectors and bits. Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 3, pp. 55-76. http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a3/

[1] Alon N., Spenser Dzh., Veroyatnostnyi metod, Binom, M., 2007, 320 pp.

[2] Borovkov A.A., Matematicheskaya statistika, Uchebnik, Nauka, M., 1984, 472 pp. | MR

[3] Borovkov A.A., Matematicheskaya statistika, Izd-vo Instituta matematiki, Novosibirsk, 1997, 772 pp. | MR

[4] Denisov O.V., “Statisticheskaya otsenka mnozhestva suschestvennykh argumentov dvoichnoi vektor-funktsii s iskazhennymi znacheniyami”, Matematicheskie voprosy kriptografii, 5:4 (2014), 41–61 | DOI

[5] Denisov O.V., “Ob algoritme poiska suschestvennykh argumentov sluchainykh bulevykh funktsii”, Matematicheskie voprosy kriptografii, 6:3 (2015), 19–32 | DOI | MR

[6] Dzhonson N.L., Kots S., Balakrishnan N., Odnomernye nepreryvnye raspredeleniya, v 2 ch., v. 2, BINOM, Laboratoriya znanii, M., 2012, 600 pp.

[7] Korolyuk V.S., Portenko N.I., Skorokhod A.V., Turbin A.F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985, 640 pp. | MR

[8] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR

[9] Prokhorov Yu.V., “O rasprostranenii neravenstv S.N. Bernshteina na mnogomernyi sluchai”, Teoriya veroyatn. i ee prim., 13:2 (1968), 266–274

[10] Senatov V.V., “Kachestvennye effekty v otsenkakh skorosti skhodimosti v tsentralnoi predelnoi teoreme v mnogomernykh prostranstvakh”, Trudy MIAN, 215, Nauka, M., 1997, 3–239 | MR | Zbl

[11] Erdesh P., Spenser Dzh., Veroyatnostnye metody v kombinatorike, Mir, M., 1976, 131 pp.

[12] Bentkus V., “On the dependence of Berry-Esseen bound on dimension”, J. Stat. Plann. Inference, 113 (2003), 385–402 | DOI | MR

[13] Biryukov A., Canniére C., Quisquater M., “On multiple linear approximations”, CRYPTO 2004, Lect. Notes Comput. Sci., 3152, 2004, 1–22 | DOI | MR

[14] Guo-Zhen X., Massey J.L., “A spectral characterization of correlation-immune combining functions”, IEEE Trans. Inf. Theory, 34 (1988), 569–571 | DOI | MR

[15] Kaliski B., Robshaw M., “Linear cryptanalysis using multiple approximations”, CRYPTO 1994, Lect. Notes Comput. Sci., 839, 1994, 26–39 | DOI | MR

[16] Hell M., Johansson T., Maximov A., Meier W., “The Grain family of stream ciphers”, Lect. Notes Comput. Sci., 4986, 2008, 179–190 | DOI

[17] Quimet F., “Refined normal approximations for the central and noncentral chi-square distributions and some applications”, Statistics, 56:4 (2022), 935–956 | DOI | MR

[18] Seri R., “A tight bound on the distance between a noncentral chi square and a normal distribution”, IEEE Commun. Lett., 19:11 (2015), 1877-1880 | DOI