$ k$-homogeneous Latin Squares, their transversals and condition of orthogonality
Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 3, pp. 45-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the $k$-homogeneous Latin Squares, i.e. Latin Squares of order $kn$ with elements from $\{0,\dots,kn-1\}$ such that reducing modulo $n$ gives $(kn \times kn)$-matrix consisting of $k^2$ identical Latin Squares of order $n$. Some characteristics of transversals for $k$-homogeneous Latin Squares are described. Sufficient condition of orthogonality is presented.
@article{MVK_2022_13_3_a2,
     author = {V. V. Borisenko},
     title = {$ k$-homogeneous {Latin} {Squares,} their transversals and condition of orthogonality},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {45--54},
     year = {2022},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a2/}
}
TY  - JOUR
AU  - V. V. Borisenko
TI  - $ k$-homogeneous Latin Squares, their transversals and condition of orthogonality
JO  - Matematičeskie voprosy kriptografii
PY  - 2022
SP  - 45
EP  - 54
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a2/
LA  - ru
ID  - MVK_2022_13_3_a2
ER  - 
%0 Journal Article
%A V. V. Borisenko
%T $ k$-homogeneous Latin Squares, their transversals and condition of orthogonality
%J Matematičeskie voprosy kriptografii
%D 2022
%P 45-54
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a2/
%G ru
%F MVK_2022_13_3_a2
V. V. Borisenko. $ k$-homogeneous Latin Squares, their transversals and condition of orthogonality. Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 3, pp. 45-54. http://geodesic.mathdoc.fr/item/MVK_2022_13_3_a2/

[1] Sachkov V.N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004, 421 pp. | MR

[2] Sachkov V.N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977, 320 pp. | MR

[3] Sachkov V.N., Kurs kombinatornogo analiza, NITs «RKhD», M.–Izhevsk, 2013, 336 pp.

[4] Kholl M., Kombinatorika, Mir, M., 1970, 424 pp. | MR

[5] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, Lan, M., 2015, 608 pp.

[6] Borisenko V.V., “O transversalyakh raspavshikhsya latinskikh kvadratov chetnogo poryadka”, Matematicheskie voprosy kriptografii, 5:1 (2014), 5–25

[7] Borisenko V.V., “O transversalyakh odnorodnykh latinskikh kvadratov”, Matematicheskie voprosy kriptografii, 6:3 (2015), 5–17 | MR

[8] Borisenko V.V., “O transversalyakh raspavshikhsya latinskikh kvadratov s tozhdestvennoi podstanovkoi $\chi_{ACDB}$”, Matematicheskie voprosy kriptografii, 11:1 (2020), 9–26 | MR

[9] Borisenko V.V., “$k$-raspavshiesya i $k$-odnorodnye latinskie kvadraty i ikh transversali”, Matematicheskie voprosy kriptografii, 11:3 (2020), 5–19 | MR

[10] Borisenko V.V., “Neprivodimye $n$-kvazigruppy sostavnogo poryadka”, Kvazigruppy i lupy, Matem. issled., 51, Shtiintsa, Kishinev, 1979, 38–42

[11] Handbook of Combinatorial Designs, 2nd ed., Chapman$\$Hall/CRC Press, 2006, 990 pp.

[12] Wanless I. M., “A generalisation of transversals for Latin squares”, Electron. J. Comb., 9 (2002), R12 | DOI | MR

[13] Wanless I. M., “Transversals in Latin squares”, Quasigroups and Related Systems, 15, Inst. Math. Acad. Sci. Moldova, 2007, 169–190 | MR

[14] Wanless I. M., “Transversals in Latin squares: a survey”, Surveys in Combinatorics, London Math. Soc. Lect. Note Ser., 392, Cambridge Univ. Press, 2011, 403–437, 447 pp. | MR

[15] McKay B. D., Meynert A., Myrvold W. J., “Small Latin squares, quasigroups and loops”, J. Combin. Des., 15:2 (2007), 98–119 | DOI | MR

[16] Brown J. W., Parker E. T., “More on order 10 turn-squares”, Ars Combinatoria, 35 (1993), 125–127 | MR