@article{MVK_2022_13_2_a7,
author = {A. A. Pe\~nate and P. F. Arrozarena},
title = {Extending {AES} improvements: {A} proposal for {Alpha-MAC} in view of collision resistance},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {117--131},
year = {2022},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_2_a7/}
}
TY - JOUR AU - A. A. Peñate AU - P. F. Arrozarena TI - Extending AES improvements: A proposal for Alpha-MAC in view of collision resistance JO - Matematičeskie voprosy kriptografii PY - 2022 SP - 117 EP - 131 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2022_13_2_a7/ LA - en ID - MVK_2022_13_2_a7 ER -
A. A. Peñate; P. F. Arrozarena. Extending AES improvements: A proposal for Alpha-MAC in view of collision resistance. Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 2, pp. 117-131. http://geodesic.mathdoc.fr/item/MVK_2022_13_2_a7/
[1] Daemen J., Rijmen V., “A new MAC construction Alred and a specific instance Alpha-MAC”, Lect. Notes Comput. Sci., 3557, 2005, 1–7 | DOI
[2] Daemen J., Rijmen V., The design of Rijndael: AES — The Advanced Encryption Standard, Information Security and Cryptography, Springer, 2002, xvii+238 pp. | DOI | MR | Zbl
[3] Huang J., Seberry J., Susilo W., “On the internal structure of ALPHA-MAC”, Lect. Notes Comput. Sci., 4341, 2006, 271–285 | DOI | Zbl
[4] Biryukov A. et al., “Collision attacks on AES-based MAC: Alpha-MAC”, Lect. Notes Comput. Sci., 4727 (2007), 166–180 | DOI
[5] Yuan Z. et al., Distinguishing and forgery attacks on ALRED and its AES-based instance Alpha-MAC, Cryptology ePrint Archive, Paper 2008/516, , 2008 https://eprint.iacr.org/2008/516
[6] Yuan Z. et al., “New birthday attacks on some MACs based on block ciphers”, Lect. Notes Comput. Sci., 5677 (2009), 209–230 | DOI | MR | Zbl
[7] Wu S., Wang M., Yuan Z., Cryptology ePrint Archive, No 160, 2010
[8] Luykx A. et al., “A MAC mode for lightweight block ciphers”, FSE 2016, Lect. Notes Comput. Sci., 9783, Springer, Berlin-Heidelberg, 2016, 43–59 | DOI | Zbl
[9] Mennink B., Neves S., “Encrypted Davies-Meyer and its dual: Towards optimal security using mirror theory”, CRYPTO 2017, Lect. Notes Comput. Sci., 10403, Springer, Cham, 2017, 556–583 | DOI | MR | Zbl
[10] Datta N. et al., “Single key variant of PMAC-Plus”, IACR Trans. Symm. Cryptology, 2017, no. 4, 268–305 | DOI
[11] Naito Y., “Blockcipher-based MACs: Beyond the birthday bound without message length”, ASIACRYPT 2017, Lecture Notes in Computer Science, 10626, Springer, Cham, 2017, 446–470 | DOI | MR | Zbl
[12] Quang T., “Considering two MAC under SIG variants of the basic SIGMA protocol”, Matematicheskie voprosy kriptografii, 10:2 (2019), 145–158 | DOI | MR | Zbl
[13] Khoureich A., R-MAC - a lightweight authentication protocol for RFID Tags, Cryptology ePrint Archive, Paper 2018/214, , 2018 https://eprint.iacr.org/2018/214.pdf
[14] Ankele R., Bohl F., Friedberger S., MergeMAC: A MAC for authentication with strict time constraints and limited bandwidth, Cryptology ePrint Archive, Paper 2018/342, , 2018 https://eprint.iacr.org/2018/342.pdf | MR
[15] Datta N. et al., “Encrypt or decrypt? To make a single-key beyond birthday secure nonce-based MAC”, CRYPTO 2018, Lect. Notes Comput. Sci., 10991, Springer, Cham, 2018, 631–661 | DOI | MR | Zbl
[16] Zoltak B., Message authentication (MAC) algorithm for the VMPC-R (RC4-like) stream cipher, Cryptology ePrint Archive, Paper 2019/041, , 2019 https://eprint.iacr.org/2019/041.pdf
[17] Ye C., Tian T., New Insights into divide-and-conquer attacks on the round-reduced Keccak-MAC, Cryptology ePrint Archive, Paper 2018/059, , 2018 https://eprint.iacr.org/2018/059.pdf
[18] Luykx A., Preneel B., “Optimal forgeries against polynomial-based MACs and GCM”, Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lect. Notes Comput. Sci., 10820, Springer, Cham, 2018, 445–467 | DOI | MR | Zbl
[19] Leurent G., Nandi M., Sibleyras F., “Generic Attacks against Beyond-Birthday-Bound MACs”, CRYPTO 2018, Lect. Notes Comput. Sci., 10991, Springer, Cham, 2018, 306–336 | DOI | MR | Zbl
[20] Iwata T. et al., Universal forgery and multiple forgeries of mergeMAC and generalized constructions, Cryptology ePrint Archive, Paper 2018/793, , 2018 https://eprint.iacr.org/2018/793.pdf
[21] Liu F., Cao Z., Wang G., Finding ordinary cube variables for Keccak-MAC with greedy algorithm, Cryptology ePrint Archive, Paper 2018/799, , 2018 https://eprint.iacr.org/2018/799.pdf
[22] Daemen J., Rijmen V., The Pelican MAC function, Cryptology ePrint Archive, Paper 2005/088, , 2005 https://eprint.iacr.org/2005/088.pdf
[23] Daemen J., Rijmen V., The MAC function Pelican 2.0, Cryptology ePrint Archive, Paper 2005/088, , 2014 https://eprint.iacr.org/2005/088.pdf | Zbl
[24] Alfonso A., “Generación aleatoria de permutaciones con óptima difusión”, III Semin. Cient. Nac. de Criptografía (Univ. de la Habana, Cuba, 2016), 9 pp.
[25] Freyre P., Díaz N., Díaz R., Pérez C., “Random generation of MDS matrices”, 3rd Workshop on Current Trends in Cryptology (CTCrypt 2014), 2014, 105–114
[26] Daemen J., Rijmen V., “Refinements of the Alred construction and MAC security claims”, IET inf. security, 4:3 (2010), 149–157 | DOI
[27] Spain M., Varia M., “Diversity within the Rijndael design principles for resistance to differential power analysis”, CANS 2016, Lect. Notes Comput. Sci., 10052, Springer, Cham, 2016, 71–87 | DOI | MR
[28] Alfonso A., Freyre P., How secure is the Advanced Encryption Standard with random ShiftRows against Fault Analysis?, J. Sci. Technol. Inf. Security, 1:07 (2018), 14–21
[29] Alfonso A., Freyre P., “Random diffusion optimal permutations with a look in dynamic Rijndael”, Revi. Cienc. Matem., 32:1 (2018), 45–50