@article{MVK_2022_13_2_a2,
author = {S. V. Agievich and S. V. Poruchnik and V. I. Semenov},
title = {Small scalar multiplication on {Weierstrass} curves using~division polynomials},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {17--35},
year = {2022},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2022_13_2_a2/}
}
TY - JOUR AU - S. V. Agievich AU - S. V. Poruchnik AU - V. I. Semenov TI - Small scalar multiplication on Weierstrass curves using division polynomials JO - Matematičeskie voprosy kriptografii PY - 2022 SP - 17 EP - 35 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2022_13_2_a2/ LA - en ID - MVK_2022_13_2_a2 ER -
S. V. Agievich; S. V. Poruchnik; V. I. Semenov. Small scalar multiplication on Weierstrass curves using division polynomials. Matematičeskie voprosy kriptografii, Tome 13 (2022) no. 2, pp. 17-35. http://geodesic.mathdoc.fr/item/MVK_2022_13_2_a2/
[1] Bernstein D. J., Lange T., Explicit-formulas database, , 2007 http://hyperelliptic.org/EFD
[2] Bernstein D. J., Lange T., “Faster addition and doubling on elliptic curves”, ASIACRYPT 2007, Lect. Notes Comput. Sci., 4833, 2007, 29–50 | DOI | MR | Zbl
[3] Bernstein D. J., Birkner P., Joye M., Lange T., Peters C., “Twisted Edwards curves”, AFRICACRYPT 2008, Lect. Notes Comput. Sci., 5023, 2008, 389–405 | DOI | MR | Zbl
[4] Edwards H. M., “A normal form for elliptic curves”, Bull. (New Series) Amer. Math. Soc., 44:3 (2007), 393–422 | DOI | MR | Zbl
[5] Hamburg M., Faster Montgomery and double-add ladders for short Weierstrass curves, Cryptology ePrint Archive, Report 2020/437, , 2020 https://eprint.iacr.org/2020/437 | Zbl
[6] Hankerson D., Menezes A. J., Vanstone S., Guide to Elliptic Curve Cryptography, Springer-Verlag, 2003 | MR
[7] Joye M., Tunstall M., “Exponent recoding and regular exponentiation algorithms”, AFRICACRYPT 2009, Lect. Notes Comput. Sci., 5580, 2008, 334–349 | DOI | MR
[8] Kanayama N., Liu Y., Okamoto E., Saito K., Teruya T., Uchiyama S., “Implementation of an elliptic curve scalar multiplication method using division polynomials”, IEICE Trans. Fund. Electr., Communic. Comput. Sci., E97.A:1 (2014), 300–302 | DOI
[9] Koblitz N., “Elliptic curve cryptosystems”, Math. Comput., 48:177 (1987), 203–209 | DOI | MR | Zbl
[10] Langley A., Hamburg M., Turner S., Elliptic curves for security, Request for Comments, 7748, RFC Editor, 2016 https://rfc-editor.org/rfc/rfc7748.txt
[11] Longa P., Miri A., “New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields”, PKC 2008, Lect. Notes Comput. Sci., 4939, 2008, 229–247 | DOI | MR | Zbl
[12] Longa P., Miri A., New multibase non-adjacent form scalar multiplication and its application to elliptic curve cryptosystems (extended version), Cryptology ePrint Archive, Report 2008/052, , 2008 https://eprint.iacr.org/2008/052
[13] Meloni N., “New Point Addition Formulae for ECC Applications”, WAIFI 2007, Lect. Notes Comput. Sci., 4547, 1986, 189–201 | DOI | MR
[14] Miller V. S., “Use of elliptic curves in cryptography”, CRYPTO'85, Lect. Notes Comput. Sci., 218, 1986, 417–426 | DOI | MR | Zbl
[15] Montgomery P., “Speeding the Pollard and elliptic curve methods of factorization”, Math. Comput., 48:177 (1987), 243–264 | DOI | MR | Zbl
[16] Okeya K., Takagi T., “The width-$w$ NAF method provides small memory and fast elliptic scalar multiplications secure against side channel attacks”, CT-RSA 2003, Lect. Notes Comput. Sci., 2612, 2003, 328–342 | DOI | MR | Zbl
[17] Renes J., Costello C., Batina L., “Complete addition formulas for prime order elliptic curves”, EUROCRYPT 2016, Lect. Notes Comput. Sci., 9665, 2007, 403–428 | DOI | MR
[18] Rivain M., Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves, Cryptology ePrint Archive, Report 2011/338, , 2011 https://eprint.iacr.org/2011/338
[19] Shipsey R., Elliptic Divisibility Sequences, PhD thesis, Univ. of London, Goldsmiths, 2001
[20] Stange K. E., “The tate pairing via elliptic nets”, Pairing 2007, Lect. Notes Comput. Sci., 4575, 2007, 329–348 | DOI | MR | Zbl