@article{MVK_2021_12_3_a5,
author = {V. I. Korzhik and V. S. Starostin and M. M. Kabardov and A. M. Gerasimovich and V. A. Yakovlev and A. G. Zhuvikin},
title = {Information theoretically secure key sharing protocol executing with constant noiseless public channels},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {125--141},
year = {2021},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a5/}
}
TY - JOUR AU - V. I. Korzhik AU - V. S. Starostin AU - M. M. Kabardov AU - A. M. Gerasimovich AU - V. A. Yakovlev AU - A. G. Zhuvikin TI - Information theoretically secure key sharing protocol executing with constant noiseless public channels JO - Matematičeskie voprosy kriptografii PY - 2021 SP - 125 EP - 141 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a5/ LA - en ID - MVK_2021_12_3_a5 ER -
%0 Journal Article %A V. I. Korzhik %A V. S. Starostin %A M. M. Kabardov %A A. M. Gerasimovich %A V. A. Yakovlev %A A. G. Zhuvikin %T Information theoretically secure key sharing protocol executing with constant noiseless public channels %J Matematičeskie voprosy kriptografii %D 2021 %P 125-141 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a5/ %G en %F MVK_2021_12_3_a5
V. I. Korzhik; V. S. Starostin; M. M. Kabardov; A. M. Gerasimovich; V. A. Yakovlev; A. G. Zhuvikin. Information theoretically secure key sharing protocol executing with constant noiseless public channels. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 3, pp. 125-141. http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a5/
[1] Menezes A.J., van Oorschot P.C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, 1997, 780 pp. | Zbl
[2] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Inf. Theory, 22:6 (1976), 644–654 | DOI | Zbl
[3] Schneier B., Applied Cryptography, J. Wiley Sons, 1996, 784 pp. | Zbl
[4] Alpern B., Schneider F. B., “Key exchange using 'keyless cryptography'”, Inf. Process. Lett., 16:2 (1983), 79–81 | DOI
[5] Mukherjee A., Fakoorian S.A.A., Huang J., Swindlehurst A.L., Principles of physical layer security in multiuser wireless network: A survey, 2014, arXiv: 1011.3754 [cs.IP]
[6] Wyner A., “Wire-tap channel concept”, Bell Syst. Techn. J., 54 (1975), 1355–1387 | DOI | Zbl
[7] Csiszár I., Körner J., “Broadcast channel with confidential messages”, IEEE Trans. Inf. Theory, 24:2 (1978), 339–348 | DOI | Zbl
[8] Korjik V., Yakovlev V., “Non-asymptotic estimates for efficiency of code jamming in a wire-tap channel”, Probl. Inf. Transmis., 17:4 (1981), 223–228
[9] Maurer U., “Secret key agreement by public discussion from common information”, IEEE Trans. Inf. Theory, 39:3 (1993), 733–742 | DOI | Zbl
[10] Yakovlev V., Korzhik V. I., Morales-Luna G., “Key distribution protocols based on noisy channels in presence of an active adversary: Conventional and new versions with parameter optimization”, IEEE Trans. Inf. Theory, 54:6 (2008), 2535–2549 | DOI | Zbl
[11] Qin D., Ding Z., “Exploiting multi-antenna non-reciprocal channels for share secret key generation”, IEEE Trans. Inf. Forens. Security, 11:10 (2016), 2691–2705
[12] Wallace J. M., Sharma D. K., “Automatic-secret keys from reciprocal MIMO wireless channel measurements and analysis”, IEEE Trans. Inf. Forens. Security, 5:3 (2010), 381–392 | DOI
[13] Starostin V., Korzhik V., Kabardov M., Gerasimovich A., Yakovlev V., Morales-Luna G., “Key generation protocol executing through non-reciprocal fading channels”, Int. J. Comput. Sci. Appl., 16:1 (2019), 1–16
[14] Bennett C. H., Bessette F., Brassard G., Salvail L., Smolin J., “Experimental quantum cryptography”, J. Cryptol., 5:1 (1992), 3–28 | DOI | Zbl
[15] Ben-Israel A., Greville T. N. E., Generalized inverses: theory and applications, Springer, NY, 2003, xvi+420 pp. | Zbl
[16] Edelman A., Eigenvalues and Condition Numbers of Random Matrices, Ph.D. Diss., Massachusetts Inst. Technology, 1989, 106 pp.
[17] Horn R. A., Johnson C. R., Matrix Analysis, 2nd ed., Cambridge University Press, 2012
[18] Akemann G., Burda Z., Universal microscopic correlation functions for products of independent Ginibre matrices, 2012, arXiv: 1208.0187v2 [math-ph]
[19] Korjik V., Morales-Luna G., Balakirsky V., “Privacy amplification theorem for noisy main channel”, Lect. Notes Comput. Sci., 2200, 2001, 18–26 | DOI | Zbl
[20] Shalkoska K., “Implementation of LDPC Algorithm”, C Programming Language, LAP LAMBERT Acad. Publ., 2017
[21] Fano R. M., Transmission of Information. A Statistical Theory of Communication, J. Wiley Sons, 1961, 389 pp.
[22] Dasgupta D., Roy A., Nag A., Advances in User Authentication, Springer, 2017, xiv+360 pp.
[23] Needham R. M., Schroeder M. D., “Using encryption for authentication in large network of computers”, Commun. ACM, 21:12 (1978), 993–999 | DOI | Zbl
[24] Jin R., Shi L., Zeng A., Pande A., Mohapatra P., “MagPairing: Pairing smartphones in close proximity using magnetometer”, IEEE Trans. Inf. Forens. Security, 6 (2016), 1304–1319
[25] Roy N., Choudhuri R.R., “Faster communication through physical vibration”, USENIX Symp. Netw. Syst. Design, 2016, 671–684
[26] Goel S., Negi R., “Guaranteeing secrecy using artificial noise”, IEEE Trans. Wireless Communic., 7:6 (2008), 180–189
[27] Fossorier M. P. C., Mihaljevic M., Imai H., “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation”, IEEE Trans. Communic., 47:5 (1999), 673–680 | DOI
[28] Korzhik V., Starostin V., Kabardov M., Morales-Luna G., Gerasimovich A., Yakovlev V., Zhuvikin A., “Information theoretical secure key sharing protocol for noiseless public constant parameter channels with nothing cryptographic assumptions”, Proc. Int. Conf. FedCSIS (Germany, 2019), 361–366