Information theoretically secure key sharing protocol executing with constant noiseless public channels
Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 3, pp. 125-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a new key sharing protocol executing with constant public noiseless (at least for eavesdroppers) channels. In contrast to well-known protocols (like Diffie-Hellman etc.) it does not use cryptographic assumptions (like integer factoring, discrete logarithm etc.). This protocol does not imply any advantages for legitimate users against eavesdroppers except for authentication. It is based on EVSKey Scheme, proposed recently by G. Qin and Z. Ding. But because we prove that such scheme is insecure, it needs significant modification. We introduce an artificial noise and privacy amplification procedure for this purpose. Simulation results are presented concerning key bit error probabilities for both legitimate and illegal users. The error decoding probabilities are calculated for LDPC codes application. The amount of Shannon information leaking to eavesdroppers is estimated. The channel traffic needed for execution of the proposed protocol is given too.
@article{MVK_2021_12_3_a5,
     author = {V. I. Korzhik and V. S. Starostin and M. M. Kabardov and A. M. Gerasimovich and V. A. Yakovlev and A. G. Zhuvikin},
     title = {Information theoretically secure key sharing protocol executing with constant noiseless public channels},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {125--141},
     year = {2021},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a5/}
}
TY  - JOUR
AU  - V. I. Korzhik
AU  - V. S. Starostin
AU  - M. M. Kabardov
AU  - A. M. Gerasimovich
AU  - V. A. Yakovlev
AU  - A. G. Zhuvikin
TI  - Information theoretically secure key sharing protocol executing with constant noiseless public channels
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 125
EP  - 141
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a5/
LA  - en
ID  - MVK_2021_12_3_a5
ER  - 
%0 Journal Article
%A V. I. Korzhik
%A V. S. Starostin
%A M. M. Kabardov
%A A. M. Gerasimovich
%A V. A. Yakovlev
%A A. G. Zhuvikin
%T Information theoretically secure key sharing protocol executing with constant noiseless public channels
%J Matematičeskie voprosy kriptografii
%D 2021
%P 125-141
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a5/
%G en
%F MVK_2021_12_3_a5
V. I. Korzhik; V. S. Starostin; M. M. Kabardov; A. M. Gerasimovich; V. A. Yakovlev; A. G. Zhuvikin. Information theoretically secure key sharing protocol executing with constant noiseless public channels. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 3, pp. 125-141. http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a5/

[1] Menezes A.J., van Oorschot P.C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, 1997, 780 pp. | Zbl

[2] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Inf. Theory, 22:6 (1976), 644–654 | DOI | Zbl

[3] Schneier B., Applied Cryptography, J. Wiley Sons, 1996, 784 pp. | Zbl

[4] Alpern B., Schneider F. B., “Key exchange using 'keyless cryptography'”, Inf. Process. Lett., 16:2 (1983), 79–81 | DOI

[5] Mukherjee A., Fakoorian S.A.A., Huang J., Swindlehurst A.L., Principles of physical layer security in multiuser wireless network: A survey, 2014, arXiv: 1011.3754 [cs.IP]

[6] Wyner A., “Wire-tap channel concept”, Bell Syst. Techn. J., 54 (1975), 1355–1387 | DOI | Zbl

[7] Csiszár I., Körner J., “Broadcast channel with confidential messages”, IEEE Trans. Inf. Theory, 24:2 (1978), 339–348 | DOI | Zbl

[8] Korjik V., Yakovlev V., “Non-asymptotic estimates for efficiency of code jamming in a wire-tap channel”, Probl. Inf. Transmis., 17:4 (1981), 223–228

[9] Maurer U., “Secret key agreement by public discussion from common information”, IEEE Trans. Inf. Theory, 39:3 (1993), 733–742 | DOI | Zbl

[10] Yakovlev V., Korzhik V. I., Morales-Luna G., “Key distribution protocols based on noisy channels in presence of an active adversary: Conventional and new versions with parameter optimization”, IEEE Trans. Inf. Theory, 54:6 (2008), 2535–2549 | DOI | Zbl

[11] Qin D., Ding Z., “Exploiting multi-antenna non-reciprocal channels for share secret key generation”, IEEE Trans. Inf. Forens. Security, 11:10 (2016), 2691–2705

[12] Wallace J. M., Sharma D. K., “Automatic-secret keys from reciprocal MIMO wireless channel measurements and analysis”, IEEE Trans. Inf. Forens. Security, 5:3 (2010), 381–392 | DOI

[13] Starostin V., Korzhik V., Kabardov M., Gerasimovich A., Yakovlev V., Morales-Luna G., “Key generation protocol executing through non-reciprocal fading channels”, Int. J. Comput. Sci. Appl., 16:1 (2019), 1–16

[14] Bennett C. H., Bessette F., Brassard G., Salvail L., Smolin J., “Experimental quantum cryptography”, J. Cryptol., 5:1 (1992), 3–28 | DOI | Zbl

[15] Ben-Israel A., Greville T. N. E., Generalized inverses: theory and applications, Springer, NY, 2003, xvi+420 pp. | Zbl

[16] Edelman A., Eigenvalues and Condition Numbers of Random Matrices, Ph.D. Diss., Massachusetts Inst. Technology, 1989, 106 pp.

[17] Horn R. A., Johnson C. R., Matrix Analysis, 2nd ed., Cambridge University Press, 2012

[18] Akemann G., Burda Z., Universal microscopic correlation functions for products of independent Ginibre matrices, 2012, arXiv: 1208.0187v2 [math-ph]

[19] Korjik V., Morales-Luna G., Balakirsky V., “Privacy amplification theorem for noisy main channel”, Lect. Notes Comput. Sci., 2200, 2001, 18–26 | DOI | Zbl

[20] Shalkoska K., “Implementation of LDPC Algorithm”, C Programming Language, LAP LAMBERT Acad. Publ., 2017

[21] Fano R. M., Transmission of Information. A Statistical Theory of Communication, J. Wiley Sons, 1961, 389 pp.

[22] Dasgupta D., Roy A., Nag A., Advances in User Authentication, Springer, 2017, xiv+360 pp.

[23] Needham R. M., Schroeder M. D., “Using encryption for authentication in large network of computers”, Commun. ACM, 21:12 (1978), 993–999 | DOI | Zbl

[24] Jin R., Shi L., Zeng A., Pande A., Mohapatra P., “MagPairing: Pairing smartphones in close proximity using magnetometer”, IEEE Trans. Inf. Forens. Security, 6 (2016), 1304–1319

[25] Roy N., Choudhuri R.R., “Faster communication through physical vibration”, USENIX Symp. Netw. Syst. Design, 2016, 671–684

[26] Goel S., Negi R., “Guaranteeing secrecy using artificial noise”, IEEE Trans. Wireless Communic., 7:6 (2008), 180–189

[27] Fossorier M. P. C., Mihaljevic M., Imai H., “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation”, IEEE Trans. Communic., 47:5 (1999), 673–680 | DOI

[28] Korzhik V., Starostin V., Kabardov M., Morales-Luna G., Gerasimovich A., Yakovlev V., Zhuvikin A., “Information theoretical secure key sharing protocol for noiseless public constant parameter channels with nothing cryptographic assumptions”, Proc. Int. Conf. FedCSIS (Germany, 2019), 361–366