Constructing $8$-bit permutations, $8$-bit involutions and $8$-bit orthomorphisms with almost optimal cryptographic parameters
Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 3, pp. 89-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear bijective transformations are crucial components in the design of many symmetric ciphers. To construct permutations having cryptographic properties close to the optimal ones is not a trivial problem. We propose a new construction based on the well-known Lai – Massey structure for generating binary permutations of dimension $n=2k$, $k\geq2$. The main cores of our constructions are: the inversion in $\mathbb{F}_{2^k}$, an arbitrary $k$-bit non-bijective function (which has no preimage for $0$) and any $k$-bit permutation. Combining these components with the finite field multiplication, we provide new $8$-bit permutations with high values of its basic cryptographic parameters. Also, we show that our approach may be used for constructing $8$-bit involutions and $8$-bit orthomorphisms that have strong cryptographic properties.
@article{MVK_2021_12_3_a4,
     author = {R. A. de la Cruz Jim\'enez},
     title = {Constructing $8$-bit permutations, $8$-bit involutions and $8$-bit orthomorphisms with almost optimal cryptographic parameters},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {89--124},
     year = {2021},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a4/}
}
TY  - JOUR
AU  - R. A. de la Cruz Jiménez
TI  - Constructing $8$-bit permutations, $8$-bit involutions and $8$-bit orthomorphisms with almost optimal cryptographic parameters
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 89
EP  - 124
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a4/
LA  - en
ID  - MVK_2021_12_3_a4
ER  - 
%0 Journal Article
%A R. A. de la Cruz Jiménez
%T Constructing $8$-bit permutations, $8$-bit involutions and $8$-bit orthomorphisms with almost optimal cryptographic parameters
%J Matematičeskie voprosy kriptografii
%D 2021
%P 89-124
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a4/
%G en
%F MVK_2021_12_3_a4
R. A. de la Cruz Jiménez. Constructing $8$-bit permutations, $8$-bit involutions and $8$-bit orthomorphisms with almost optimal cryptographic parameters. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 3, pp. 89-124. http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a4/

[1] Avanzi R.A., A Salad of Block Ciphers. The State of the Art in Block Ciphers and their Analysis, Cryptology ePrint Archive, Report 2017/1171, http://eprint.iacr.org/2017/1171

[2] Bannier A., Bodin N., Filiol E., Partition-based trapdoor ciphers, Cryptology ePrint Archive, Report 2016/493, http://eprint.iacr.org/2016/493

[3] Bracken C., Leander G., “A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree”, Finite Fields and Their Appl., 16 (2010), 231–242 | DOI | Zbl

[4] Biryukov A., Perrin L., Udovenko A., “Reverse engineering the S-box of Streebog, Kuznyechik and STRIBOBr1”, EUROCRYPT 2016, Lect. Notes Comput. Sci., 9665, 2016, 372–402 | DOI | Zbl

[5] Boura C., Canteaut A., Jean J. et al., “Two notions of differential equivalence on S-boxes”, Designs, Codes and Cryptogr., 87 (2019), 185–202 | DOI | Zbl

[6] Boura C., Canteaut A., Knudsen L.R. et al., “Reflection ciphers”, Designs, Codes and Cryptogr., 82 (2017), 3–25 | DOI | Zbl

[7] Brier E., Clavier C., Olivier F., “Correlation power analysis with a leakage model”, CHES 2004, Lect. Notes Comput. Sci., 3156, 2004, 157–173

[8] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge Univ. Press, Cambridge, 2021

[9] Carlet C., Goubin L., Prouff E., Quisquater M., Rivain M., “Higher-order masking schemes for S-boxes”, FSE 2012, Lect. Notes Comput. Sci., 7549, 2012, 366–384 | DOI | Zbl

[10] Courtois N. T., Pieprzyk J., Cryptanalysis of block ciphers with overdefined systems of equations, Cryptology ePrint Archive, Report 2002/044, https://eprint.iacr.org/2002/044

[11] De la Cruz Jiménez R.A., “Generation of 8-Bit S-boxes having almost optimal cryptographic properties using smaller 4-bit S-boxes and finite field multiplication”, LATINCRYPT 2017, Lect. Notes Comput. Sci., 11368, 2017, 191–206

[12] Dinur A., Shamir A., Cube attacks on tweakable black box polynomials, Cryptology ePrint Archive, Report 2008/385, https://eprint.iacr.org/2008/385

[13] Evans A., “Applications of complete mappings and orthomorphisms of finite groups”, Quasigroups and Related System, 23 (2015), 5–30 | Zbl

[14] Evans A., Orthomorphism graphs of groups, Springer-Verlag, Berlin–Heidelberg, 1992, 116 pp. | Zbl

[15] Gierlichs B., Batina L., Tuyls P., Preneel B., “Mutual information analysis”, CHES 2008, Lect. Notes Comput. Sci., 5154, 2008, 426-442 | DOI

[16] Glukhov M.M., Elizarov V.P., Nechaev A.A., Algebra, Textbook, 2nd ed., revised and suppl., Lan', Sankt-Peterburg–Moskva–Krasnodar, 2015 (in Russian)

[17] GOST R 34.12-2015 Information technology. Cryptographic protection of information. Block ciphers, Standartinform, M., 2015

[18] Fomin D. B., “New classes of $8$-bit permutations based on a butterfly structure”, Matematicheskie voprosy kriptografii, 10:2 (2019), 169–180 | DOI | Zbl

[19] Gérard B., Grosso V., Naya-Plasencia M., Standaert F.X., Block ciphers that are easier to mask: how far can we go?, CHES 2013, Lect. Notes Comput. Sci., 8086, 2013, 383–399 | DOI | Zbl

[20] Gérard G. Sh., Gueron Sh., Balanced permutations Even–Mansour ciphers, Cryptology ePrint Archive, Report 2014/642, , 2014 https://eprint.iacr.org/2014/642

[21] Gligoroski D., Odegard R.S., Mihova M., et al., “Cryptographic hash function Edon-R”, Proc. 1st Int. Workshop Security Communic. Networks, IWSCN, IEEE, 2009, 1–9

[22] Feng D., Feng X., Zhang W., Fan X., Wu C., “Loiss: a byte oriented stream cipher”, IWCC 2011, Lect. Notes Comput. Sci., 6639, 2011, 109–125 | DOI | Zbl

[23] Johnson D.M., Dulmage A.L., Mendelsohn N.S., “Orthomorphisms of groups and orthogonal Latin squares. I”, Canad. J. Math., 13 (1961), 356–372 | DOI | Zbl

[24] Kazymyrov O. V., Kazymyrova V. N., Oliynykov R. V., “A method for generation of high-nonlinear S-boxes based on gradient descent”, Matematicheskie Voprosy Kriptografii, 5:2 (2014), 71–78 | DOI | Zbl

[25] Kazymyrov O. V., Kazymyrova V. N., Extended criterion for absence of fixed points, Cryptology ePrint Archive, Report 2013/576, https://eprint.iacr.org/2013/576

[26] Kim H., Hong S., Lim J., “A fast and provably secure higher-order masking of AES S-box”, CHES 2011, Lect. Notes Comput. Sci., 6917, 2011, 95–107 | DOI | Zbl

[27] Kim J., Combined differential, linear and related-key attacks on block ciphers and MAC algorithms, Cryptology ePrint Archive, Report 2006/451, http://eprint.iacr.org/2006/451.pdf

[28] Kocher P., Jaffe J., Jun B., Introduction to Differential Power Analysis and Related Attacks, Techn. Rep., Cryptography Research Inc., 1998 http://www.cryptography.com/resources/whitepapers/DPA-technical.html

[29] Kocher P., “Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems”, CRYPTO '96, Lect. Notes Comput. Sci., 1109, 1996, 104–113 | DOI | Zbl

[30] Knudsen L. R., “Truncated and higher order differentials”, FSE 1994, Lect. Notes Comput. Sci., 1008, 1994, 196–211 | DOI

[31] Lachaud G., Wolfmann J., “The weights of the orthogonals of the extended quadratic binary Goppa codes”, IEEE Trans. Inf. Theory, 36:3 (1990), 686–692 | DOI | Zbl

[32] Leander G., Abdelraheem M., Alkhzaimi H., Zenner E., “A cryptanalysis of PRINTcipher: The invariant subspace attack”, CRYPTO 2011, Lect. Notes Comput. Sci., 6841, 20110, 206–221 | DOI | Zbl

[33] Mann H.B., “On orthogonal Latin squares”, Bull. Amer. Math. Soc., 50 (1944), 249–257 | DOI | Zbl

[34] Menyachikhin A. V., “Spectral-linear and spectral-differential methods for generating S-boxes having almost optimal cryptographic parameters”, Matematicheskie Voprosy Kriptografii, 8:2 (2017), 97–116 | DOI | Zbl

[35] Menyachikhin A. V., Method for generating S-boxes using the values of linear and differential spectra and device for its realization, RU Patent No 2633132, Bull. No 29, 2017 (in Russian) https://patentdb.ru/patent/2633132 | Zbl

[36] Menyachikhin A.V., “Orthomorphisms of Abelian groups with minimal pairwise distances”, Discrete Math. Appl., 30:3 (2020), 177–186 | Zbl

[37] Menyachikhin A.V., “The limited deficit's method and the construction problem of orthomorphisms and almost ortomorphisms of Abelian group”, Diskr. Matem., 31:3 (2019), 58–77 (in Russian) | DOI

[38] Menyachikhin A. V., Device for generating orthomorphisms using paired differences, RU Patent No 2632119, Bull. No 28, 2017 (in Russian) https://patentdb.ru/patent/2632119 | Zbl

[39] Niederreiter H., Robinson K., “Bol loops of order $pq$”, Math. Proc. Cambridge Phil. Soc., 89 (1981), 241–256 | DOI | Zbl

[40] Niederreiter H., Robinson K., “Complete mappings of finite fields”, J. Australian Math. Soc., 33 (1982), 197–212 | DOI | Zbl

[41] Piret G., Roche T., Carlet C., “PICARO – A block cipher allowing efficient higher-order side-channel resistance”, ACNS 2012, Lect. Notes Comput. Sci., 7341, 2012, 311–328 | DOI

[42] Pogorelov B. A., Pudovkina M. A., “On the distance from permutations to imprimitive groups for a fixed system of imprimitivity”, Discrete Math. Appl., 24:2 (2014), 95–108 | DOI | Zbl

[43] Pokrasenko D. P., “On the maximal component algebraic immunity of vectorial Boolean functions”, J. Appl. Industr. Math., 10:2 (2016), 257–263 | DOI | Zbl

[44] Rijmen V., Preneel B., “A family of trapdoor ciphers”, FSE 1997, Lect. Notes Comput. Sci., 1267, 1997, 139–148 | DOI | Zbl

[45] Sage Mathematics Software (Version 8.1), 2018 http://www.sagemath.org

[46] Udovenko A., Design and Cryptanalysis of symmetric-key algorithms in black and white-box models, PhD diss., Univ. Luxembourg, 2019, 268 pp.

[47] Vaudenay S., Junod P., Device and method for encrypting and decrypting a block of data, United States Patent (20040247117), 2004 https://patents.justia.com/patent/20040247117

[48] Lai X., Massey J.L., “A proposal for a new block encryption standard”, EUROCRYPT'90, Lect. Notes Comput. Sci., 473, 1991, 389–404 | DOI | Zbl

[49] Yan T., Huanguo Zh., Haiqing H., “Using evolutionary computation in construction of orthomorphism”, 2009 Int. Conf. Multimed. Inf. Netw. Security (Hubei, China), v. 2, 2009, 478–481 | DOI