@article{MVK_2021_12_3_a2,
author = {I. V. Cherednik},
title = {Development of one approach to constructing a set of block bijective transformations},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {49--66},
year = {2021},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a2/}
}
I. V. Cherednik. Development of one approach to constructing a set of block bijective transformations. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 3, pp. 49-66. http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a2/
[1] Cherednik I. V., “Odin podkhod k postroeniyu tranzitivnogo mnozhestva blochnykh preobrazovanii”, Prikladnaya diskretnaya matematika, 38 (2017), 5–34 | Zbl
[2] Cherednik I. V., “Odin podkhod k postroeniyu kratno tranzitivnogo mnozhestva blochnykh preobrazovanii”, Prikladnaya diskretnaya matematika, 42 (2018), 18–47 | Zbl
[3] Cherednik I. V., “Ob ispolzovanii binarnykh operatsii pri postroenii tranzitivnogo mnozhestva blochnykh preobrazovanii”, Diskretnaya matematika, 31:3 (2019), 93–113
[4] Cherednik I. V., “Ob ispolzovanii binarnykh operatsii pri postroenii kratno tranzitivnogo mnozhestva blochnykh preobrazovanii”, Diskretnaya matematika, 32:2 (2020), 85–111
[5] Khalezov E. A., “Avtomorfizmy primitivnykh kvazigrupp”, Matematicheskii sbornik, 53:3 (1961), 329–342 | Zbl
[6] Evans T., “Embedding incomplete Latin squares”, Amer. Math. Monthly, 1960, no. 67, 959–961
[7] Gligoroski D., Markovski S., Kocarev L., Edon-R, An infnite family of cryptographic hash functions, 2006
[8] Gligoroski D., Candidate one-way functions and one-way permutations based on quasigroup string transformations, , 2005 http://eprint.iacr.org/2005/352.pdf
[9] Smetaniuk B., “A new construction on Latin squares I. A proof of the Evans conjecture”, Ars Combinatoria, 11 (1981), 155–172 | Zbl
[10] Anderson L. D., Hilton A. J. W., Thank Evans!, Proc. London Math. Soc., 47 (1983), 507–522 | DOI