Development of one approach to constructing a set of block bijective transformations
Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 3, pp. 49-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Elementary transformations are defined for finite sets of formulas in the signature $ \{*, \backslash, /\}$. A constructive description is given for the set of collections of formulas $ (w_1, \ldots, w_n) $ in variables $ x_1, \ldots, x_n $ such that for any choice of binary quasigroup (binary operation invertible in a right variable) over a finite set $\Omega$ the collection implements block bijective transformations $\Omega^n \to \Omega^n $. Collections of formulas which allow to perform calculations without using additional memory are considered separately.
@article{MVK_2021_12_3_a2,
     author = {I. V. Cherednik},
     title = {Development of one approach to constructing a set of block bijective transformations},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {49--66},
     year = {2021},
     volume = {12},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a2/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - Development of one approach to constructing a set of block bijective transformations
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 49
EP  - 66
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a2/
LA  - ru
ID  - MVK_2021_12_3_a2
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T Development of one approach to constructing a set of block bijective transformations
%J Matematičeskie voprosy kriptografii
%D 2021
%P 49-66
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a2/
%G ru
%F MVK_2021_12_3_a2
I. V. Cherednik. Development of one approach to constructing a set of block bijective transformations. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 3, pp. 49-66. http://geodesic.mathdoc.fr/item/MVK_2021_12_3_a2/

[1] Cherednik I. V., “Odin podkhod k postroeniyu tranzitivnogo mnozhestva blochnykh preobrazovanii”, Prikladnaya diskretnaya matematika, 38 (2017), 5–34 | Zbl

[2] Cherednik I. V., “Odin podkhod k postroeniyu kratno tranzitivnogo mnozhestva blochnykh preobrazovanii”, Prikladnaya diskretnaya matematika, 42 (2018), 18–47 | Zbl

[3] Cherednik I. V., “Ob ispolzovanii binarnykh operatsii pri postroenii tranzitivnogo mnozhestva blochnykh preobrazovanii”, Diskretnaya matematika, 31:3 (2019), 93–113

[4] Cherednik I. V., “Ob ispolzovanii binarnykh operatsii pri postroenii kratno tranzitivnogo mnozhestva blochnykh preobrazovanii”, Diskretnaya matematika, 32:2 (2020), 85–111

[5] Khalezov E. A., “Avtomorfizmy primitivnykh kvazigrupp”, Matematicheskii sbornik, 53:3 (1961), 329–342 | Zbl

[6] Evans T., “Embedding incomplete Latin squares”, Amer. Math. Monthly, 1960, no. 67, 959–961

[7] Gligoroski D., Markovski S., Kocarev L., Edon-R, An infnite family of cryptographic hash functions, 2006

[8] Gligoroski D., Candidate one-way functions and one-way permutations based on quasigroup string transformations, , 2005 http://eprint.iacr.org/2005/352.pdf

[9] Smetaniuk B., “A new construction on Latin squares I. A proof of the Evans conjecture”, Ars Combinatoria, 11 (1981), 155–172 | Zbl

[10] Anderson L. D., Hilton A. J. W., Thank Evans!, Proc. London Math. Soc., 47 (1983), 507–522 | DOI