Side-channel attacks countermeasure based on decomposed S-boxes for Kuznyechik
Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 2, pp. 147-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper describes an implementation of the Russian cryptographic standard GOST 34.12-2018 (algorithm Kuznyechik) protected against side-channel attacks. Protection method is based on the decomposition of the S-box (algorithm substitution) and allows a gain in performance and required memory in comparison with universal methods of masking.
@article{MVK_2021_12_2_a9,
     author = {T. A. Lavrenteva and S. V. Matveev},
     title = {Side-channel attacks countermeasure based on decomposed {S-boxes} for {Kuznyechik}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {147--157},
     year = {2021},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_2_a9/}
}
TY  - JOUR
AU  - T. A. Lavrenteva
AU  - S. V. Matveev
TI  - Side-channel attacks countermeasure based on decomposed S-boxes for Kuznyechik
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 147
EP  - 157
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_2_a9/
LA  - en
ID  - MVK_2021_12_2_a9
ER  - 
%0 Journal Article
%A T. A. Lavrenteva
%A S. V. Matveev
%T Side-channel attacks countermeasure based on decomposed S-boxes for Kuznyechik
%J Matematičeskie voprosy kriptografii
%D 2021
%P 147-157
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_2_a9/
%G en
%F MVK_2021_12_2_a9
T. A. Lavrenteva; S. V. Matveev. Side-channel attacks countermeasure based on decomposed S-boxes for Kuznyechik. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 2, pp. 147-157. http://geodesic.mathdoc.fr/item/MVK_2021_12_2_a9/

[1] Standartinform, M., 2018 (in Russian)

[2] Akkar M.–L., Giraud C., “An implementation of DES and AES, secure against some attacks”, CHES 2001, Lect. Notes Comput. Sci., 2162, 2001, 309–318

[3] Biryukov A., Perrin L., Udovenko A., The secret structure of the S-Box of Streebog, Kuznechik and Stribob, Cryptology ePrint Archive, http://eprint.iacr.org/2015/812.pdf

[4] Biryukov A., Perrin L., Udovenko A., Reverse-engineering the S-box of Streebog, Kuznyechik and Stribob.r1, Cryptology ePrint Archive, http://eprint.iacr.org/2016/071.pdf

[5] Chari S., Jutla C. S., Rao J. R., Rohatgi P., “Towards sound approaches to counteract power-analysis attacks”, CRYPTO'99, Lect. Notes Comput. Sci., 1666, ed. Wiener M., 1999, 398–412

[6] Coron J., “Resistance against differential power analysis for elliptic curve cryptosystems”, CHES'99, Lect. Notes Comput. Sci., 1717, 1999, 292–302

[7] Kocher P., Jaffe J., Jun B., “Differential power analysis”, CRYPTO'99, Lect. Notes Comput. Sci., 1666, 1999, 388–397

[8] Kocher P., “Timing attacks on implementations of Diffie-Hellmann, RSA, DSS, and other systems”, CRYPTO'96, Lect. Notes Comput. Sci., 1109, 1996, 104–113

[9] Messerges T.S., “Using second-order power analysis to attack DPA resistant software”, CHES 2000, Lect. Notes Comput. Sci., 1965, 2000, 238–251

[10] Perrin L., Partitions in the S-Box of Streebog and Kuznyechik, Cryptology ePrint Archive, http://eprint.iacr.org/2019/092.pdf

[11] Perrin L., Udovenko A., “Exponential S-boxes: a link between the S-boxes of BelT and Kuznyechik/Streebog”, IACR Trans. Symm. Cryptology, 2016, no. 2, 99–124

[12] Praveen Kumar Vadnala, “Time-memory trade-offs for side-channel resistant implementations of block ciphers”, CT-RCA 2017, Lect. Notes Comput. Sci., 10159, 2017, 115–130

[13] Trichina E., Korkishko L., Secure and efficient AES software implementation for smart cards, Cryptology ePrint Archive, http://eprint.iacr.org/2004/149.pdf