A natural approach to the experimental study of dependence between statistical tests
Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 1, pp. 131-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To test the hypothesis on the independence of tests included in the NIST Statistical Test Suite for each of 10000 binary segments we compute the number $\nu$ of tests which reject this segment as not corresponding to the equiprobable Bernoulli sequence hypothesis. If the tests were independent and have the same error probability, then $\nu$ should have the binomial distribution. It appears that collections of 14 and 162 NIST's tests do not satisfy this condition, but 11 tests from 14 may be considered as satisfying it. It is shown also that some sequences obtained by merging seqments of linear recurrent sequences are not rejected by NIST's package.
@article{MVK_2021_12_1_a6,
     author = {A. M. Zubkov and A. A. Serov},
     title = {A natural approach to the experimental study of dependence between statistical tests},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {131--142},
     year = {2021},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a6/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - A. A. Serov
TI  - A natural approach to the experimental study of dependence between statistical tests
JO  - Matematičeskie voprosy kriptografii
PY  - 2021
SP  - 131
EP  - 142
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a6/
LA  - en
ID  - MVK_2021_12_1_a6
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A A. A. Serov
%T A natural approach to the experimental study of dependence between statistical tests
%J Matematičeskie voprosy kriptografii
%D 2021
%P 131-142
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a6/
%G en
%F MVK_2021_12_1_a6
A. M. Zubkov; A. A. Serov. A natural approach to the experimental study of dependence between statistical tests. Matematičeskie voprosy kriptografii, Tome 12 (2021) no. 1, pp. 131-142. http://geodesic.mathdoc.fr/item/MVK_2021_12_1_a6/

[1] Rukhin A., Soto J., Nechvatal J., Smid M., Barker E., Leigh S., Levenson M., Vangel M., Banks D., Heckert A., Dray J., Vo S., A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications, NIST Special Publication 800–22 Revision 1a, eds. L. E. Bassham III, NIST, 27 April 2010

[2] L'Ecuyer P., Simard R., TestU01, Dept. d'Inform. Rech. Oper. Univ. Montreal, 2013, 214 pp. http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf | MR

[3] Iwasaki A., Analysis of NIST SP800–22 focusing on randomness of each sequence, 2017, 8 pp., arXiv: 1710.01441 | MR

[4] Feller W., An Introduction to Probability Theory and its Applications, v. 1, 3rd edition, J. Wiley Sons, N. Y. e.a., 1970, 528 pp. | MR

[5] Krattenthaler C., “Lattice path enumeration”, Handbook of Enumerative Combinatorics, CRC Press, Boca Raton–London–New York, 2015, 589–678 | MR | Zbl

[6] Zubkov A. M., Serov A. A., “Testing the NIST Statistical Test Suite on artificial pseudorandom sequences”, Matematicheskie Voprosy Kriptografii, 10:2 (2019), 89–96 | DOI | MR